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Abstract. We consider the Navier-Stokes equation on a Riemannian manifold with
the Ricci curvature bounded below. In stochastic analysis, a non-degenerate diffusion
process on a Riemannian manifold was obtained by rolling Brownian motion with
respect to a suitable metric compatible linear connection, which was introduced by
N. Ikeda and S. Watanabe about 40 years ago. To each solution of the Navier-Stokes
equation, we associate such a connection and compute the related time-dependent
Ricci curvature, which allow us to obtain a link with the strain tensor and the helicity
density in a simple formula in the case of dimension 3.
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1. Introduction

The Navier-Stokes equation (in short, NS) in a domain U of Rn is a system of partial
differential equations

(1.1) ∂tut + (ut · ∇)ut − ν∆ut +∇pt = 0, ∇ · ut = 0, u|t=0 = u0,

which describes the evolution of the velocity ut of an incompressible viscous fluid with
kinematic viscosity ν > 0, where the boundary ∂U of U is assumed to be bounded
and smooth enough, and u(x, t) = φ(x, t) for x ∈ ∂U and t > 0 for a smooth enough
function φ(·, t) defined on the boundary. This equation applies to all incompressible
viscous fluids including turbulence, the phenomena which are almost as varied as in
the realm of life, cf. U. Frisch [25]. Two types of transport processes are involved in
this equation: one is the diffusion effect described by ν ∆ut, another is the non-linear
convection (ut · ∇)ut. The Reynolds number

Re =
convective effet

diffusion effet

plays a central role in describing the mechanics of the fluid motion. In particular the
phenomenon of turbulence appears as the Reynolds number Re becomes larger than
the critical value.
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The vorticity ξt of ut (when n = 3) is given by ξt = ∇ × ut, which may have some
advantageous in the description of the dynamics of the fluid motion. If ut is a solution
to Navier-Stokes equation (1.1), then ξt satisfies the vorticity transport equation

(1.2)
dξt
dt

+∇utξt − ν∆ξt = ∇s
ξtut

where ∇sut, the symmetric part of ∇ut, which measures the rate of the strain. The
helicity density ht, defined by ht = ut · ξt, is a fundamental quantity in the study
of laminar and turbulent flows, as a measure of the degree how the vortex lines of
a fluid flow are tangled and intertwined (see [38]). The information of ht is helpful
to understand the regularity of ut, see for example [27, 7]. If (ut, ξt) is a solution to
(1.2), then together with the Poisson equation: ∆u = −∇× ξ, u is determined by the
Biot-Savart formula. In [40], Olshanskii and Rebholz proved that the NS equation is
equivalent to the following equation involving vorticity and helicity density:

(1.3)
∂ξt
∂t
− ν ∆ξt + 2∇s

utξt −∇ht = 0.

More precisely if (ut, ξt, ht) is a solution to (1.3), and (ut, ξt) are linked by Biot-Savart
formula, then ut is a solution to (1.1); furthermore, a numerical scheme based on (1.3)
was proposed in [40].

In differential geometry, the Ricci curvature (Rjk) is served to describe how a shape is
deformed along geodesics. More precisely, in a geodesic normal chart of a Riemannian
manifold M , the Riemannian metric is written in

gij = δij +O(|x|2),

and the density
√

det g of the volume measure (with respect to the Lebesgue measure
in a local chart) has an expansion

(1.4)
√

det g = 1− 1

6
Rjkx

jxk +O(|x|3).

If the Ricci curvature Ric(ξ, ξ) is positive along the vector ξ, the small cone about ξ
has smaller volume than in flat case. The Ricci curvature plays a key role not only
in geometric analysis (for example in the study of the Ricci flow equation), but also
in many scientific areas such as in mathematical physics (for example in the study of
Einstein field equation). In the study of Laplace-Beltrami operator ∆ on M , the lower
bound of Ric gives information on the long time behavior of the Brownian motion on
M . For an elliptic operator L on M , there is a metric g and a vector field Z, so that
L = ∆ + Z. The Ricci curvature has been generalized to L by Bakry and Emery, so
that the geometric analysis associated with an elliptic operator L has been developed
in the past decades. In Probability theory, during 1970’s, the Cartan’s development
has been successfully established for Brownian motion paths (see [17, 36]); in [29],
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Ikeda and Watanabe showed that the non-degenerated diffusion process associated to
an elliptic operator L could be constructed in the same way, by replacing the Levi-
Civita connection by a suitable metric compatible linear connection, called the Ikeda-
Watanabe connection.

The purpose of this work is to explore the geometry aspects coded in the NS equation
(1.1). To a solution ut of (1.1), its associated Ikeda-Watanabe connection is defined

and its related time-dependent Ricci curvature R̂ic
t

is determined.

There is a huge literature on Navier-Stokes equations on Rn, and one may refer to
[26, 33] for nice expositions and to [10] for the well-posedness of the Navier-Stokes
equation, for example.

In this paper, for convenience, we consider the following NS equation on a Riemannian
manifold M :

(1.5) ∂tut +∇utut + ν�ut = −∇pt, div(ut) = 0, u|t=0 = u0,

where pt denotes the pressure and � is the de Rham-Hodge operator. The reason
we choose here � is that it preserves the class of vector fields of divergence free (see
[21, 20]) which is convenient in many computations below.

In literature, other type of Navier-Stokes equations on a manifold have been formu-
lated, but we will not enter the detail and refer the reader to [15, 41, 37, 44]. Variational
principles for Navier-Stokes equation in the spirit of [5] have been established recently
in [11, 2, 3, 4] in terms of a class of incompressible Brownian martingales.

The organisation of the paper is as follows. In Section 2, we will present the framework
of stochastic development, introduce the Ikeda-Watanabe connection, also compute
the associated Ricci curvature. In Section 3, we will present the vorticity form of NS
equations on Riemannian manifolds, as well as their probabilistic representation. In
section 4, we will prove the main theorem in its general form on Riemannian manifolds.
In section 5, we prove the existence of weak solution of NS on a Riemannian manifold
with Ricci curvature bounded below. Section 6 is devoted to the proof of Proposition
3.2. Finally, in section 7, we give some remarks on results obtained in [41].

2. Stochastic development, Ikeda-Watanabe connection

Let M be a Riemannian manifold of n dimensions. An element r in the orthonormal
frame bundle O(M) is an isometry from Rn onto Tπ(r)M where π : O(M)→M is the
canonical projection. More precisely, an element r ∈ O(M) is composed of (x, r), where
x = π(x, r) and r is an isometry from Rn onto TxM . For the sake of simplicity, we read
r as (π(r), r), but we sometimes have to distinguish them. The Levi-Civita connection
on M gives rise to n canonical horizontal vector fields {A1, . . . , An} on O(M), defined
by the identity that dπ(r) ·Ai(r) = rεi, where {ε1, . . . , εn} is the canonical basis of Rn.
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A vector field v on M can be lift to a horizontal vector field V on O(M) such that
dπ(r)V (r) = vπ(r). Let X (M) denote the space of vector fields on M .

Given a time-independent vector field v on M there is a metric compatible connection
Γv defined as the following. Let {xt, t ≥ 0} be the diffusion process with its infinitesi-

mal generator L =
1

2
∆M + v. This diffusion may be constructed in the following way.

Let (rt)t≥0 be the solution to the Stratanovich stochastic differential equation (SDE)
on O(M):

(2.1) drt =
n∑
i=1

Ai(rt) ◦ dW i
t + V (rt) dt,

where t → (W 1
t , . . . ,W

n
t ) is a standard Brownian motion on Rn. Let xt = π(rt). We

assume that xt has the life-time ζ =∞ almost surely.

In Chapter V of [29], Ikeda and Watanabe introduced a metric compatible connec-
tion Γv so that the above diffusion process {xt; t ≥ 0} can be constructed by rolling
without slip the standard Brownian motion on Rn with respect to the connection Γv.
More precisely let {B1, . . . , Bn} be the canonical horizontal vector fields on O(M) with
respect to Γv, consider SDE on O(M):

dr̃w(t) =
n∑
i=1

Bi(r̃w(t)) ◦ dW i
t , r̃w(0) = r.

Then the generator of the diffusion process t→ x̃t(w) = π(r̃w(t)) is
1

2
∆M + v. In fact,

the construction of Γv is such that

(2.2)
1

2

n∑
j=1

L2
Bj

(f ◦ π) =
(
(
1

2
∆M + v)f

)
◦ π, f ∈ C2

c (M).

This connection Γv was defined locally in [29]. On a local chart U , {∂/∂x1, . . . , ∂/∂xn}

is a local basis of tangent spaces TxM with x ∈ U , and v =
n∑
i=1

vi∂/∂xi. Let Γ0,k
ij

be the Christoffel symbols of Levi-Civita connection. According to ([29], p.271), the
Christoffel symbols Γkij of Γv is defined by (see also [1]),

(2.3) Γkij = Γ0,k
ij −

2

n− 1

(
δki

n∑
`=1

gj`v
` − gijvk

)
.

Accordingly, the second term appearing on the right-hand side of (2.3) is the tensor
field of Ikeda-Watanabe’s connection. The global formulation for Γv is stated as the
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following proposition which will be used later on, but its proof of course follows (2.3)
immediately.

Proposition 2.1. Let ∇v be the covariant derivative with respect to the connection Γv,
and ∇0 with respect to the Levi-Civita connection. Then

(2.4) ∇v
XY = ∇0

XY −
2

n− 1
Kv(X, Y )

and the torsion of the connection Γv

(2.5) T v(X, Y ) = − 2

n− 1
Kv(X, Y )

for any X, Y ∈ X (M), where

(2.6) Kv(X, Y ) = 〈Y, v〉X − 〈X, Y 〉 v.

Therefore T v is skew-symmetric (TSS), that is 〈T v(X, Y ), Z〉 = −〈T v(Z, Y ), X〉 for
all X, Y, Z ∈ X (M) if and only if v = 0.

Proof. Using (2.4) and the fact ∇0
XY −∇0

YX − [X, Y ] = 0, we have

T v(X, Y ) = − 2

n− 1

(
Kv(X, Y )−Kv(Y,X)

)
=
−2

n− 1

(
〈Y, v〉X − 〈X, v〉Y

)
,

that is (2.5). Let X, Y, Z be vector fields such that 〈T v(X, Y ), Z〉+ 〈T v(Z, Y ), X〉 = 0,
then

2〈Y, v〉〈X,Z〉 = 〈X, v〉〈Y, Z〉+ 〈Z, v〉〈Y,X〉.
Taking Y = v and X = Z in above equality, we get

|v|2|X|2 = 〈X, v〉2.
If v 6= 0, taking X orthogonal to v yields a contradiction. �

Proposition 2.2. Let Ric0 (resp. Ricv) be the Ricci curvature defined by the connection
∇0 (resp. ∇v). Then

(2.7) Ricv(X) = Ric0(X)− 4(n− 2)

(n− 1)2
Kv(X, v) +

2(n− 2)

n− 1
∇0
Xv +

2

n− 1
div(v)X

for every X ∈ X (M).

Proof. Recall that T v is the torsion of the connection ∇v, which is a tensor field of type
(1, 2). Hence

∇v
X∇v

YZ = ∇0
X∇v

YZ + T v(X,∇v
YZ) = ∇0

X

(
∇0
YZ + T v(Y, Z)

)
+ T v(X,∇v

YZ)

= ∇0
X∇0

YZ + (∇0
XT

v)(Y, Z) + T v(∇0
XY, Z) + T v(Y,∇0

XZ) + T v(X,∇v
YZ).
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By exchanging X and Y we also have

∇v
Y∇v

XZ = ∇0
Y∇0

XZ + (∇0
Y T

v)(X,Z) + T v(∇0
YX,Z) + T v(X,∇0

YZ) + T v(Y,∇v
XZ).

On the other hand, by definition

∇v
[X,Y ]Z = ∇0

[X,Y ]Z + T v([X, Y ], Z).

Therefore, by putting the previous three equations we deduce that the curvature tensor

Rv(X, Y )Z = ∇v
X∇v

YZ −∇v
Y∇v

XZ −∇v
[X,Y ]Z

admits the following expression

R0(X, Y )Z + (∇0
XT

v)(Y, Z)− (∇0
Y T

v)(X,Z) + T v(∇0
XY −∇0

YX,Z)

− T v(Y, T v(X,Z)) + T v(X,T v(Y, Z))− T v([X, Y ], Z).

Let {e1, . . . , en} be a local frame field of TM . Then Ricv(X) =
n∑
i=1

Rv(X, ei)ei, so that

the previous identity can be rewritten

Ricv(X) = Ric0(X) + I1 − I2 + I3 − I4,

where

I1 =
n∑
i=1

T v(X,T v(ei, ei)), I2 =
n∑
i=1

T v(ei, T
v(X, ei)),

I3 =
n∑
i=1

(∇0
XT

v)(ei, ei), I4 =
n∑
i=1

(∇0
ei
T v)(X, ei).

Remark that
n∑
i=1

Kv(ei, ei) = −(n − 1)v. Since T v(X, Y ) = − 2
n−1

Kv(X, Y ), by an

elementary computation

I1 =
4

(n− 1)2

n∑
i=1

Kv(X,Kv(ei, ei)) = −4(n− 1)

(n− 1)2
Kv(X, v)

and

I2 =
4

(n− 1)2

n∑
i=1

Kv(ei, Kv(X, ei)) = − 4

(n− 1)2
Kv(X, v).

To handle the other two terms, we first observe that

(∇0
XT

v)(Y, Z) = − 2

n− 1
K∇0

Xv
(Y, Z)

and

(∇0
Y T

v)(X,Z) = − 2

n− 1
K∇0

Y v
(X,Z).
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Therefore

I3 = − 2

n− 1

n∑
i=1

K∇0
Xv

(ei, ei) = 2∇0
Xv.

I4 = − 2

n− 1

n∑
i=1

K∇0
ei
v(X, ei) = − 2

n− 1
div(v)X +

2

n− 1
∇0
Xv.

Putting these equations together (2.7) follows immediately. �

After having computed the curvature tensor of the connection ∇v, we may work out
its Ricci curvature accordingly. However, since the dual connection of Γv is not metric,
we prefer to use the so-called intrinsic Ricci tensor instead. The intrinsic Ricci tensor
is introduced by B. Driver in [13], which is used in stochastic analysis on the path
space of Riemannian manifolds (see also [9, 23, 28, 35]). A Weitzenböck formula for
a connection which is not necessarily torsion skew-symmetric has been established in
[18].

Definition 2.3. The intrinsic Ricci tensor is defined by

(2.8) R̂icv(X) = Ricv(X) +
n∑
i=1

(∇v
ei
T v)(X, ei)

for X ∈ X (M), where {ei; i = 1, . . . , n} is a local orthonormal frame field of the
tangent bundle.

Theorem 2.4. If the dimension n = 3, then R̂icv admits the following simple expres-
sion:

(2.9) R̂icv = Ric0 + 2v ⊗ v + 2∇0,sv,

where ∇0,sv denotes the symmetric part of ∇0v.

Proof. By (2.5), we have

T v
(
∇v
ei
X, ei

)
= − 2

n− 1

(
〈ei, v〉∇v

ei
X − 〈∇v

ei
X, v〉 ei

)
,

T v
(
X,∇v

ei
ei
)

= − 2

n− 1

(
〈∇v

ei
ei, v〉X − 〈X, v〉∇v

ei
ei

)
.

Since ∇v
ei

(
T v(X, ei)

)
=
(

(∇v
ei
T v)(X, ei) + T v

(
∇v
ei
X, ei

)
+ T v

(
X,∇v

ei
ei
))
, a little bit

computation leads to

(∇v
ei
T v)(X, ei) = − 2

n− 1

(
〈ei,∇v

ei
v〉X − 〈X,∇v

ei
v〉 ei

)
.

Put

(∇v
ei
T v)(X, ei) = − 2

n− 1

(
〈ei,∇0

ei
v〉X − 〈X,∇0

ei
v〉 ei

)
+ Ji,
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where

Ji =
4

(n− 1)2

(
〈ei, Kv(ei, v)〉X − 〈X,Kv(ei, v)〉 ei

)
.

While it is easy to see that

n∑
i=1

Ji =
4

(n− 1)2

(
(n− 1)|v|2X −Kv(X, v)

)
.

Therefore the sum
n∑
i=1

(∇v
ei
T v)(X, ei) is equal to

− 2

n− 1

(
div(v)X −

n∑
i=1

〈X,∇0
ei
v〉 ei

)
+

4

(n− 1)2

(
(n− 1)|v|2X −Kv(X, v)

)
.

Since n = 3, the above formula yields that

(2.10)
3∑
i=1

(∇v
ei
T v)(X, ei) = −div(v)X +

3∑
i=1

〈X,∇0
ei
v〉 ei + 2|v|2X −Kv(X, v).

On the other hand, by (2.7), for n = 3,

(2.11) Ricv(X) = Ric0(X)−Kv(X, v) +∇0
Xv + div(v)X,

and
3∑
i=1

〈X,∇0
ei
v〉 ei +∇0

Xv =
3∑
i=1

(
〈X,∇0

ei
v〉+ 〈∇0

Xv, ei〉
)
ei = 2∇0,s

X v.

By summing up (2.10) and (2.11), we then obtain

R̂icv(X) = Ric0(X) + 2|v|2X − 2Kv(X, v) + 2∇0,s
X v.

Now remarking that |v|2X −Kv(X, v) = 〈X, v〉v, we therefore deduce that

R̂icv(X) = Ric0(X) + 2〈X, v〉v + 2∇0,s
X v

for any vector field X and (2.9) holds. �

3. Vorticity and its probabilistic representation

Let’s first recall the definition of the Hodge Laplacian � on vector fields. There
exists a one-to-one correspondence between the space of vector fields X (M) and that
of differential 1-forms Λ1(M). On a local chart U ,

{
∂/∂x1, . . . , ∂/∂xn

}
is a basis of the

tangent space TxM and {dx1, . . . , dxn} a dual basis of the co-tangent space T ∗xM . The
inner product in TxM (as well as the one for tensor bundle) is denoted by 〈 , 〉, while
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the duality between T ∗xM and TxM is denoted by ( , ). Let gij = 〈∂/∂xi, ∂/∂xj〉. Let
u =

∑n
i=1 ui∂/∂xi be a vector field. Then the associated differential form ũ is given by

ũ =
n∑
i=1

( n∑
j=1

gijuj

)
dxi.

Similarly given a differential 1-form ω =
n∑
j=1

ωjdx
j, its corresponding vector field ω#

has the expression

ω# =
n∑
i=1

( n∑
`=1

gi`ω`

) ∂

∂xi
,

where gij = 〈dxi, dxj〉. Note that (gij) is the inverse matrix of (gij). It can be verified

that for A ∈ X (M) and ω ∈ Λ1(M), (ω,A) = 〈ω#, A〉 = 〈ω, Ã〉. Let � = dd∗ + d∗d be
the De Rham-Hodge operator on differential forms, where d∗ is the adjoint operator of
the exterior derivative d. Then �A = (�Ã)#. Moreover∫

M

(�ω,A) dx =

∫
M

〈�ω, Ã〉 dx =

∫
M

〈ω,�Ã〉 dx =

∫
M

(ω,�A) dx,

if A or ω has a compact support, and M has an empty boundary. Here dx denotes the
Riemannian-Lebesgue measure on M . The Bochner-Weitzenböck reads as

(3.1) �A = −∆A+ Ric(A), A ∈ X (M)

where ∆A denotes the trace Laplacian of a vector field A. For a (1, 1)-type tensor
T : X (M)→ X (M), we denote by T# : Λ1(M)→ Λ1(M) its adjoint

(3.2) (T#ω,A) = (ω, T (A)), A ∈ X (M).

Let ut be a (smooth) solution to the Navier-Stokes equation on a Riemannian manifold
M without boundary:

(3.3) ∂tut +∇utut + ν�ut = −∇pt, div(ut) = 0, u|t=0 = u0.

The second equation which says that ut is diverence-free for each t, may be stated that
d∗ũt = 0. The vorticity, denoted by ωt, of ut (for every t) is defined to be ωt = ∗ω̃t,
where ω̃t = dũt is the exterior derivative of the corresponding one form of the vector
field ut and ∗ is the Hodge star operator. According to T.Taylor [44], if the dimension
n = 3 and M is a domain of the Euclidean space of three dimensions, then our definition
reduces to the usual curl of ut.

For simplicity, we may also use the following convention. Let β be a differential p-
form and T : X (M) → X (M) a tensor of type (1, 1). Define the p-form β / T by, for
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X1, . . . , Xp,

(3.4) (β / T )(X1, . . . , Xp) = β
(
T (X1), X2, . . . , Xp

)
+ . . .+ β

(
X1, . . . , Xp−1, T (Xp)

)
.

If β is a 2-form and T = ∇u, then for X, Y ∈ X (M),

(3.5) (β /∇u)(X, Y ) = β(∇Xu, Y ) + β(X,∇Y u).

If β is a 1-form and T = ∇u, then for X ∈ X (M),

(β /∇u)(X) = β(∇Xu).

Proposition 3.1. Let dim(M) = 3 and ωt the vorticity of ut, where ut is a solution
to Navier-Stokes equation (3.3). Then ωt satisfies the following equation

(3.6) ∂tωt +∇utωt + ν�ωt = ωt / (∇sut).

Proof. Eq. (3.6) is called the vorticity transport equation, which can be obtained
directly by applying the exterior derivative d both sides of the first equation in (3.3)
and using the fact that d∗ũt = 0, see [44] for example. �

If we consider ut and the vorticity stretching factor ∇sut in (3.6) as given variables,
then the vorticity transport equation appears as a linear parabolic equation, which
can be treated by using PDE theory and stochastic analysis too. For example it is
possible to derive the vorticity ωt via the Feynman-Kac formula and therefore express
the vorticity ωt in terms of the velocity, the tensor-of-strain and functional integration
implicitly. Such a formulation for ωt has been obtained for the Euclidean case, and
useful in the study of the Navier-Stokes equation.

Our next task is to derive such a functional integral representation for the vorticity
ωt. The complication in our case is that the vorticity transport equation (3.6) is a
linear parabolic equation on a manifold, so the classical Feynman-Kac formula can
not be applied directly. Therefore, we need to rewrite the vorticity transport equation
(3.6) into a parabolic equation on a flat space. This can be done by lifting the vorticity
transport equation (3.6) to the orthonormal frames O(M), cf. [36, 29] in which the
heat equations of tensor fields are treated.

Let ω be a differential 1-form. Define

(3.7) F i
ω(r) = (ωπ(r), rεi) = (π∗ω,Ai)r, i = 1, . . . , n,

for r ∈ O(M), where {ε1, . . . , εn} is the standard basis of the Euclidean space Rn, π∗ω
is the pull-back of ω by the bundle projection π : O(M) 7→M . Then

(3.8) (LAj
F i
ω)(r) = (∇rεjω, rεi) = (∇ω, rεj ⊗ rεi)

for i, j ≤ n, where the second duality takes place in Tπ(r)M ⊗ Tπ(r)M . In fact, suppose
s 7→ r(s) ∈ O(M) is the smooth curve such that r(0) = r, r′(0) = Aj(r).
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Let ξs = π(r(s)). Then //−1
s := r ◦ r(s)−1 is the parallel translation from TξsM onto

TxM along the curve ξ·, so that

F i
ω(r(s)) = (ωξs , r(s)εi) = (//−1

s ωξs , rεi).

Eq.(3.8) now follows immediately by differentiating both sides of the previous equation
with respect to s at s = 0. Similarly one verify that (L2

Aj
F i
ω)(r) = (∇rεj∇ω, rεj ⊗ rεi).

In particular

∆O(M)F
i
ω :=

n∑
j=1

L2
Aj
F i
ω = (∆ω, rεi) = F i

∆ω(r).

This equation for the trace Laplacian of ω can be obtained similarly for a general tensor
field, cf. [6, 8, 9, 16, 18, 29, 31, 36, 42] for example. Thanks to this equality for the
trace Laplacian, we are now in a position to lift the vorticity transport equation to the
principal bundle O(M). Let Ut be the horizontal lift of ut to O(M) for each t. Then
Ut(r) =

∑n
j=1〈ut(π(r)), rεj〉Aj(r). According to (3.8),

(LUtF
i
ω)(r) =

n∑
j=1

〈ut, rεj〉(LAj
F i
ω)(r) = 〈∇utω, rεi〉 = F i

∇utω
(r).

In order to handle the vorticity transport equation, we need to handle term involving
the tensor-of-strain. To this end write φt = ωt /∇sut. Then

F i
φt(r) = (φt, rεi) = ωt(∇s

rεi
ut) =

n∑
j=1

〈∇s
rεi
ut, rεj〉 (ωt, rεj) =

n∑
j=1

〈∇s
rεi
ut, rεj〉F j

ωt
.

Let K(t, r) = (Kij(t, r)), where Kij(t, r) = 〈∇s
rεi
ut(π(r)), rεj〉 for i, j ≤ n. Then

it is easy to see that Fφt(r) = K(t, r)Fωt(r). It remains to deal with the Hodge
Laplacian �ω. Applying the Bochner-Weitzenböck formula to ω, �ω = −∆ω+Ric#ω.
Let ricr = r−1Ricπ(r)r be the equi-invariant representation of Ric on O(M). Then
FRic#ω = ricFω. Finally we may lift the vorticity transport equation to the principal
bundle O(M) by applying the scalarization F on both sides of (3.6), which gives rise
to the corresponding vorticity transport equation on O(M):

(3.9)
d

dt
Fωt = ν∆O(M)Fωt − LUtFωt + (K(t, ·)− ν ric)Fωt .

A functional integration representation formula for the vorticity ωt can be obtained
by using Feynman-Kac formula to (3.9), if the underlying diffusion we are going to
use is non-explosive. Therefore some technical assumptions have to be imposed on the
geometry of the manifold (and in fact on the regularity of the vorticity ωt as well).
From now on, we will work with a manifold whose Ricci curvature is bounded from
below. That is, there is a constant κ ∈ R such that

(3.10) Ric ≥ −κ.
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First of all, as we have pointed out already, we shall prove that the concerned diffusion
process do not explode at a finite time. For this purpose, we consider a family of vector
fields {vt(x); t ≥ 0} on M , which satisfies the following conditions: (t, x) 7→ vt(x) is
continuous, for each t ≥ 0, vt ∈ C1+α for some α > 0, and div(vt) = 0. Let Vt be
the horizontal lift of vt to O(M). Then div(Vt) = div(vt) ◦ π (cf. [22], page 595), and
therefore div(Vt) = 0.

Consider the following Stratonovich type stochastic differential equation on O(M):

(3.11) drt =
n∑
k=1

Ak(rt) ◦ dW k
t + Vt(rt)dt, r|t=0 = r0.

Denote by rt(w, r0) the solution to (3.11), and ζ(w, r0) its life-time. Let

Σ(t, w) = {r0 ∈ O(M); ζ(w, r0) > t}.
Then for each t > 0 given, almost surely Σ(t, w) is an open subset of O(M) and

r0 → rt(w, r0) is a local diffeomorphism on Σ(t, w) (cf. [31]). Let rt(r0) = rt(w, r0) for
simplicity. The Jacobian Jrt of r0 → rt(r0) is equal to 1, and according to [31], the
Jacobian Jr−1

t
of inverse map r−1

t is given by

Jr−1
t

= exp
(
−
∫ t

0

n∑
k=1

div(Ak)(rs(r0)) ◦ dW k
s −

∫ t

0

div(Vs(rs(r0)) ds
)

= 1.

For any ϕ ∈ Cc(O(M)), almost surely,

(3.12)

∫
O(M)

ϕ(rt(r0)) 1Σ(t,w)(r0) dr0 =

∫
O(M)

ϕ(r0)1rt(Σ(t,w))(r0) dr0,

where dr0 is the Liouville measure on O(M) ( [42], page 185) such that π#(dr0) = dx0.

Let dM(x, y) be the Riemannian distance on M between x and y. Fix a reference
point xM ∈M , consider

ρ(r) = dM(π(r), xM).

It is known that for each x0 given, x→ dM(x, x0) is smooth out of Cx0 ∪{x0}, where
Cx0 is the cut-locus of x0. It is known that Cx0 is negligible with respect to dx. Hence
ρ is smooth out of π−1(CxM ∪ {xM}). According to [42], page 197, on the complement
of π−1(Cx0 ∪ {x0}),

(3.13)
1

2
∆O(M)dM(π(·), x0) ≤ n− 1

2dM(π(·), x0)
+

1

2

√
nκ,

and |∇xdM(x, x0)| = 1. Therefore on the complement of π−1(Cx0 ∪{x0}), it holds that

(3.14) |LVtdM(π(·), x0)| ≤ |Vt|.
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The lower bound of 1
2
∆O(M)ρ is more delicate, however according to a result on page

90 in [28], for π(r) ∈ B(xM , R)\(Cx0 ∪ {x0}),

(3.15)
1

2
∆O(M)dM(π(·), x0) ≥ n− 1

2ρ
− 1

2

√
n(n− 1)KR,

where KR is the upper bound of sectional curvature on the big ball B(xM , R).

Proposition 3.2. Suppose the Ricci curvature is bounded from below (3.10) and sup-
pose

(3.16)

∫ T

0

∫
M

|vs(x)|2 dxds <∞.

Then there is a non-decreasing process L̂t ≥ 0 and a Brownian motion {βt; t ≥ 0} on
R such that for almost surely initial r0,

(3.17) ρ(rt)− ρ(r0) = βt +

∫ t

0

(
(
1

2
∆O(M) + LVs)ρ

)
(rs) ds− L̂t, t < ζ(w, r0).

Proof. The proof will be postphoned in Section 6. �

Theorem 3.3. Assume that (3.10) and (3.16) hold. Then for almost r0, ζ(w, r0) =∞
almost surely.

Proof. We have, by (3.17),

ρ(rt∧ζ)
2 ≤ ρ(r0)2 + t ∧ ζ + 2

∫ t∧ζ

0

ρ(rs)dβs + 2

∫ t∧ζ

0

ρ(rs) (Lsρ)(rs) ds,

where Ls = 1
2
∆O(M) +LVs . Using (3.13) and (3.14), there is constants C > 0 such that

E(ρ(rt∧ζ)
2) ≤ ρ(r0)2 + C

∫ t

0

E
((

2ρ(rs)(Lsρ)(rs) + 1
)
1(s<ζ)

)
ds

≤ ρ(r0)2 + 2C

∫ t

0

E
(

(1 + ρ(rs))(1 + |Vs(rs)|)1(s<ζ)

)
ds.

By hypothesis (3.10), there is a constant c0 > 0 such that vol(B(x0, δ)) ≤ ec0δ, and
therefore for a constant λ0 > 0,

CM =

∫
O(M)

exp(−λ0 d
2
M(π(r0), x0)) dr0 < +∞.

Define the probability measure dµ on O(M) by

(3.18) dµ(r0) =
1

CM
exp(−λ0 d

2
M(π(r0), x0)) dr0.

Then
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∫
O(M)

E(ρ(rt∧ζ)
2) dµ

≤
∫
O(M)

ρ(r0)2dµ+ 2C

∫ t

0

∫
O(M)

E
(

(1 + ρ(rs))(1 + |Vs(rs)|)1(s<ζ)

)
dµds

≤
∫
O(M)

ρ(r0)2dµ+ 4C
(∫ t

0

∫
O(M)

E
(

(1 + ρ(rs∧ζ)
2)
)
dµds

)1/2

×

×
(∫ t

0

∫
O(M)

E
(

(1 + |Vs(rs)|)21(s<ζ)

)
dµds

)1/2

.

Note that∫ t

0

∫
O(M)

E
(

(1 + |Vs(rs)|)21(s<ζ)

)
dµds ≤ 2

(
T +

1

CM

∫ T

0

∫
M

|vs(x)|2 dxds
)
.

Set ψ(t) =

∫
O(M)

E
(
ρ(rt∧ζ)

2
)
dµ and

(3.19) C(T, v) = 4C
√

2

√
T +

1

CM
||v||2L2([0,T ]×M).

Remarking that
√
ξ ≤ 1 + ξ for ξ ≥ 0, above two inequalities imply that

ψ(t) ≤
(∫

O(M)

ρ(r0)2 dµ+ C(T, v)
)

+ C(T, v)

∫ t

0

ψ(s) ds.

The Gronwall lemma then yields that∫
O(M)

E(ρ(rt∧ζ)
2) dµ ≤

(∫
O(M)

ρ(r0)2 dµ+ C(T, v)
)

exp(C(T, v)).

The result follows. �

We are now in a position to establish the main result of this section. Let T > 0 be
fixed. Assume that ut is a solution to (3.3) such that (t, x) 7→ ut(x) is continuous and
for each t ≥ 0, ut ∈ C1+α with α > 0. Consider the following SDE on O(M),
(3.20)drs,t(r, w) =

√
2ν

n∑
i=1

Ai(rs,t(r, w)) ◦ dW i
t − UT−t(rs,t(r, w)) dt, s < t < T,

rs,s(r, w) = r.

Let vt(x) = uT−t(x). Then by Theorem 3.3, SDE (3.20) does not explode at a finite
time. Let Qs,t(w) be solution to the resolvent equation
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(3.21)
d

dt
Qs,t(w) = Qs,t(w)JT−t(rs,t(r, w)), s < t < T, Qs,s(w) = Id

where

(3.22) Jt(r) = K(t, r)− ν ricr.

Theorem 3.4. Under the notations and the assumptions stated above, if

(3.23) E
(
sups≤t≤T |Qs,tFωT−t

(rs,t)|
)
< +∞,

then the following functional integration representation holds:

(3.24) Fωt = E
(
QT−t,TFω0(rT−t,T )

)
.

Proof. For the sake of simplicity, we denote rs,t = rs,t(r, w) and set F (t, r) = Fωt(r).
Applying Itô’s formula to Qs,tF (T − t, rs,t) for dt with t ∈ (s, T ), we have

dt

(
Qs,t F (T − t, rs,t)

)
= dtQs,t F (T − t, rs,t) +Qs,t dt

(
F (T − t, rs,t)

)
= Qs,tJT−t(rs,t)F (T − t, rs,t) +

√
2ν Qs,t

n∑
i=1

(LAi
F )(T − t, rs,t) dW i

t

+Qs,t

(
−(∂tF )(T − t, rs,t) + ν (∆O(M)F )(T − t, rs,t)− (LUT−t

F )(T − t, rs,t)
)
dt

=
√

2ν Qs,t

n∑
i=1

(LAi
F )(T − t, rs,t) dW i

t ,

where the last equality is due to Equation (3.9). It follows that

Qs,t F (T − t, rs,t)− F (T − s, r) =
√

2ν
n∑
i=1

∫ t

s

Qs,τ (LAi
F )(T − τ, rs,τ ) dW i

τ .

Under Condition (3.23), the local martingale defined by the right hand side of above
equality becomes a true martingale. Taking expectation on the two sides gives

E
(
Qs,t F (T − t, rs,t

)
= F (T − s, r).

Now let t = T , then E
(
Qs,T F (0, rs,T )

)
= F (T − s, r). Replacing s by T − t, we get

representation formula (3.24). �
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4. Intrinsic Ricci tensors for Navier-Stokes equations

Since a solution ut of the Navier-Stokes equation is in general a time-dependent vector
field on M , the associated SDE (3.20) in Section 3 is much more complicated than SDE
(2.1), which in turn gives rise to a family of Ikeda-Watanabe connections as defined
in Section 2. On the other hand we may consider the following SDE on the principal
bundle O(M):

drw(t) =
√

2ν
n∑
i=1

Bi(rw(t)) ◦ dW i
t , rw(0) = r,

whose infinitesimal generator is given by

ν
n∑
i=1

L2
Bi

(f ◦ π) =
(

(ν∆M + 2νv)f
)
◦ π,

where v is a time-dependent vector field given by

(4.1) v = − 1

2ν
ut.

The Ricci curvature associated with the Ikeda-Watanabe connection Γv(t,)̇ is denoted
by Rict for every t if no confusion may arise. According to (2.9)

(4.2) R̂ict = Ric0 +
1

2ν2
ut ⊗ ut −

1

ν
∇0,sut,

where Ric0 is the Ricci curvature of the manifold M .

Proposition 4.1. Suppose the dimension n = 3.
(i) It holds that

(4.3) div(R̂ict) = div(Ric0) +
1

2ν2
∇utut −

1

ν
Ric0ut.

(ii) Let Ŝcalt denote the associated scalar curvature: Ŝcalt =
n∑
i=1

〈R̂ictei, ei〉 for any

orthonormal basis (ei) of TxM . Then

(4.4) Ŝcalt = Scal0 +
1

2ν2
|ut|2.

Proof. (i) Since div(ut) = 0, div(ut ⊗ ut) = ∇utut, and

∇ut = ∇sut +∇skut.

We claim that

div(∇skut) = −�ut.
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In fact, if X ∈ X (M) with a compact support in M , then∫
M

〈div(∇skut), X〉 dx = −
∫
M

〈∇skut,∇X〉 dx = −
∫
M

〈∇skut,∇skX〉 dx

= −
∫
M

〈dũt, dX̃〉 dx = −
∫
M

〈d∗dũt, X̃〉 dx

= −
∫
M

〈�ũt, X̃〉 dx.

Therefore

div(∇sut) = ∆ut + �ut = Ric0ut.

(ii) Since
n∑
i=1

〈∇0,s
ei
ut, ei〉 = div(ut) = 0,

Eq.(4.4) follows immediately from (4.2). �

The following result captures the vorticity dynamics in time and in space in terms of
the various curvatures we have introduced.

Theorem 4.2. Let M be a Riemannian manifold having Ricci tensor bounded below,
of the dimension n = 3. Suppose ut together with ωt is a regular solution to Eq.(3.6).
Then the following identity holds:

(4.5)
1

2

d

dt

∫
M

|ωt|2 dx+ ν

∫
M

|∇0ωt|2 dx =
1

2ν

∫
M

(ωt, ut)
2 dx− ν

∫
M

(R̂ict
#

ωt, ωt) dx.

Proof. By definition of Lut we have∫
M

〈∇utωt, ωt〉 dx =
1

2

∫
M

Lut |ωt|2 dx = 0,

and therefore, by Eq.(3.6),

(4.6)
1

2

d

dt

∫
M

|ωt|2 dx+ν

∫
M

|∇0ωt|2 dx = −ν
∫
M

〈Ric0 ωt, ωt〉 dx+

∫
M

〈ωt/∇sut, ωt〉 dx.

On the other hand, according to Eq.(4.2), for any vector field A,

(R̂ict
#

ωt, A) = (ωt,Ric0A) +
1

2ν2
(ωt, ut)〈ut, A〉 −

1

ν
(ωt,∇0,s

A ut),

and according to (3.5)

(ωt,∇0,s
A ut) = (ωt /∇0,sut)(A).

Hence

(4.7) R̂ict
#

ωt = Ric0,#ωt +
1

2ν2
(ωt, ut)ũt −

1

ν
ωt /∇0,sut.
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Expressing the right hand side of (4.6) in term of R̂ict
#

, Eq.(4.7) then implies that

〈R̂ict
#

ωt, ωt〉 = 〈Ric0 ωt, ωt〉+
1

2ν2
(ωt, ut)

2 − 1

ν
〈ωt /∇0,sut, ωt〉.

Thus

−ν 〈Ric0 ωt, ωt〉+ 〈ωt /∇0,sut, ωt〉. = −ν 〈R̂ict
#

ωt, ωt〉+
1

2ν
(ωt, ut)

2.

By substituting this term in the right hand side of (4.6), we get (4.5). �

5. Existence of weak solutions

Navier-Stokes equations on a compact Riemannian manifold is studied in the mono-
graph by M. Taylor [44]. In this section, we will deal with the case of Riemannian
manifold with the Ricci curvature bounded below.

Proposition 5.1. In the smooth case, it holds

(5.1)
1

2

d

dt

∫
M

|ut|2 dx+ ν

∫
M

|∇ut|2 dx = −ν
∫
M

〈Ricut, ut〉 dx.

Proof. Since M is a closed manifold∫
M

〈∇utut, ut〉 dx =
1

2

∫
M

Lut |ut|2 dx = 0

and

∫
M

〈∇p, ut〉 dx = 0. By using equation (3.3), we get

1

2

d

dt

∫
M

|ut|2 dx+ ν

∫
M

〈�ut, ut〉 dx = 0.

Therefore (5.1) follows the Bochner-Weitzenböck formula immediately. �

Proposition 5.2. Assume that (3.10) holds, that is, Ric ≥ −κ. Then the following a
priori estimate holds

(5.2)
1

2
||ut||22 + ν

∫ t

0

||∇us||22 ds ≤
1

2
||u0||22 exp(2νtκ+),

where κ+ = sup{κ, 0}.
Proof. According to (5.1), the following energy inequality holds:

1

2

d

dt

∫
M

|ut|2 dx+ ν

∫
M

|∇ut|2 dx ≤ νκ

∫
M

|ut|2 dx ≤ νκ+

∫
M

|ut|2 dx.

Let ψ(t) =
1

2
||ut||22 + ν

∫ t

0

||∇us||22 ds. Then ψ satisfies inequality

ψ(t) ≤ 1

2
||u0||22 + 2νκ+

∫ t

0

ψ(s) ds
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and (5.2) follows from the Gronwall lemma immediately �

In what follows, we will establish the existence of weak solutions in Leray sense over
any [0, T ] and

u ∈ L2([0, T ], H1(M)) ∩ L∞([0, T ], L2(M)).

To this end, we will use the heat semi-group Tt = e−t�/2 to regularize vector fields.
Let v be a continuous vector field on M with compact support and define Ttv = (Ttṽ)#.
Then Ttv solves the heat equation(

∂

∂t
+

1

2
�

)
(Ttv) = 0.

By ellipticity of � (see for example [46]), (t, x)→ (Ttv)(x) is smooth. It was shown
in [22] that

div(Ttv) = TM
t (div(v)),

where TM
t denotes heat semi-group on functions. Hence Tt preserves the space of

divergence free vector fields. It is well-known that

(5.3) |Ttv| ≤ etκ+/2 TM
t |v|.

It follows that for 1 ≤ p ≤ +∞, ||Ttv||p ≤ etκ+/2 ||v||p, and for 1 ≤ p < +∞, Ttv → v
in Lp.

Consider a family of smooth functions ϕε ∈ C∞c (M) with compact support such that

(5.4) 0 ≤ ϕε ≤ 1, ϕε(x) = 1 for x ∈ B(xM , 1/ε) and sup
ε>0
||∇ϕε||∞ < +∞,

where xM is a fixed point of M . For ε > 0, we define

Fε(u) = −TεP
(
ϕε∇Tεu(ϕεTεu)

)
− νTε�Tεu, u ∈ L2(M)

where P is the orthogonal projection from L2(M) to the subspace of vector fields of
divergence free. We have

||TεP
(
ϕε∇Tεu(ϕεTεu)

)
||2 ≤ eεκ

+/2||P
(
ϕε∇Tεu(ϕεTεu)

)
||2 ≤ eεκ

+/2||∇ϕεTεu(ϕεTεu)||2.
Since ϕε is of compact support, we have

(5.5) ||∇ϕεTεu(ϕεTεu)||2 ≤ ||ϕεTεu||∞ ||∇(ϕεTεu)||2.
Again due to compact support of ϕε, when n = 3, by Sobolev’s embedding theorem,

there is a constant β(ε) > 0 such that

||ϕεTεu||∞ ≤ β(ε) ||ϕεTεu||H2 .

For the general case, it is sufficient to bound the uniform norm by the norm of Hm

with m > n
2
.

Recall that Weitzenböck formula for p-differential forms reads as follows [29, 19]:
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(5.6) � = −∆ +R#
p ,

where ∆φ = Trace(∇∇φ) for a p-form φ, and R#
p : Λp(M)→ Λp(M) is a tensor, called

Weitzenböck curvature. For p = 1, R1 = Ric# is Ricci tensor. For the following result,
the lower bound of R#

2 is needed. Assume that

(5.7) Rp ≥ −κp, κ ∈ R.

Proposition 5.3. Let T > 0. Suppose (5.7) holds for p = 1, 2. Then there are
constants β1, β2 such that

(5.8) ||�Tεu||2 ≤
β1

ε
||u||2, ||∇Tεu||2 ≤

β2√
ε
, ε > 0.

Proof. This follows immediately from the Bismut formulae obtained in [19, 14]. For a
detailed proof, see [24]. �

By Proposition 5.3, there are constants β(ε) > 0, β̃(ε) > 0 such that

(5.9) ||ϕεTεu||∞ ≤ β(ε) ||u||2, ||Tε�Tεu||2 ≤ β̃(ε) ||u||2.

Combining (5.5) and (5.9), there are two constants β1(ε) > 0 and β2(ε) > 0 such that

||Fε(u)||2 ≤ β1(ε) ||u||22 + β2(ε)||u||2,

and Fε is locally Lipschitz. By theory of ordinary differential equation, there is a unique
solution uε to

(5.10)
duεt
dt

= Fε(u
ε
t), uε0 = u0 ∈ L2, div(uεt) = 0,

up to the explosion time τ .

Theorem 5.4. Suppose that ||Ric||∞ < ∞, and R2 is bounded below. Then for any
T > 0, there is a weak solution u ∈ L2([0, T ], H1) to Navier-Stokes equation (3.3) such
that the following energy inequality holds:

1

2
||ut||22 + ν

∫ t

0

||∇us||22 ds ≤
1

2
||u0||22 exp(2νtκ+),

where κ is lower bound of Ric.

Proof. Rewriting (5.10) in the following explicit form, for t < τ ,

duεt
dt

+ TεP
(
ϕε∇Tεuεt

(ϕεTεu
ε
t)
)

+ νTε�Tεu
ε
t = 0.



IKEDA-WATANABE’S CONNECTION, BROWNIAN MOTION 21

Note that∫
M

〈TεP
(
ϕε∇Tεuεt

(ϕεTεu
ε
t)
)
, uεt〉 dx =

∫
M

〈∇Tεuεt
(ϕεTεu

ε
t)
)
, ϕεTεu

ε
t〉 dx

=

∫
M

LTεuεt
|ϕεTεu

ε
t |2 dx = 0.

Since div(Tεu
ε
t) = 0, and∫

M

〈Tε�Tεu
ε
t , u

ε
t〉 dx =

∫
M

|∇Tεu
ε
t |2 dx+

∫
M

〈Ric(Tεu
ε
t), Tεu

ε
t〉 dx,

it follows that

1

2

d

dt

∫
M

|uεt |2 dx+ ν

∫
M

|∇Tεu
ε
t |2 dx = −ν

∫
M

〈Ric(Tεu
ε
t), Tεu

ε
t〉 dx

≤ −νκ
∫
M

|Tεu
ε
t |2 dx,

or in another form

(5.11)
1

2
||uεt ||22 + ν

∫ t

0

|||∇Tεu
ε
s||22 ds ≤

1

2
||u0||22 + νκ+

∫ t

0

||Tεu
ε
s||22 ds.

According to (5.3), above inequality implies that

1

2
||uεt ||22 ≤

1

2
||u0||22 + νκ+eεκ

+

∫ t

0

||uεs||22 ds,

and therefore, by using Gronwall lemma, for t < τ , we have

1

2
||uεt ||22 ≤

1

2
||u0||22 exp(tνκ+eεκ

+

).

It follows that τ =∞. Again, according to (5.3) and (5.11),

1

2
||Tεu

ε
t ||22 + νeεκ

+

∫ t

0

|||∇Tεu
ε
s||22 ds ≤

1

2
eεκ

+||u0||22 + νκ+eεκ
+

∫ t

0

||Tεu
ε
s||22 ds.

Therefore Gronwall lemma yields, for ε ≤ 1, that

(5.12)
1

2
||Tεu

ε
t ||22 + νeεκ

+

∫ t

0

|||∇Tεu
ε
s||22 ds ≤

eκ
+

2
||u0||22 exp(tνκ+eκ

+

).

Let T > 0. By (5.12), the family
{
Tεu

ε
· ; ε ∈ (0, 1]

}
is bounded in L2([0, T ], H1)

as well in L∞([0, T ], L2). Then there is a sequence εn and a u ∈ L2([0, T ], H1) ∩
L∞([0, T ], L2) such that Tεnu

εn converges weakly to u in L2([0, T ], H1) and ∗-weakly
in L∞([0, T ], L2). Now standard arguments allow to prove that u is a weak solu-
tion (3.3). The boundedness of Ric is needed while passing to the limit of the term∫
M

〈Ric(Tεu
ε
t), vt〉 dx.

�
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6. Proof of Proposition 3.2

We give here a complete proof of Proposition 3.2. According to the proof of Theorem
3.5.1 in [28], and emphasize the steps we have to modify.

Proof. Let ix be the injectivity radius at x and suppose that

(6.1) iM = inf{ix; x ∈M} > 0.

This means that the ball B(x, iM) does not meet the cut-locus Cx of x. We prepare
what we will need for proving (3.17).

Let x ∈ B(x0, iM/2)c which maybe is closed to or in Cx0 . Let γx : [0, η(x)] → M be
a distance-minimizing geodesic connecting x0 and x, parameterized by length. Then
γx(iM/4) 6∈ Cx or x 6∈ Cγx(iM/4). Put y = γx(iM/4). Then dM(x0, x) = dM(x0, y) +
dM(y, x). Since Cy is closed, there is ε0 > 0 such that

B(x, ε0) ∩ Cy = ∅.
We suppose that such ε0 is valid for all x (in fact, we will restrict ourselves in a compact
set). Let ε < ε0 ∧ iM

8
, and define

Dε =
{
x ∈M ; dM(x,CxM ) < ε

}
.

We claim that

(6.2) Dε ⊂ B(xM , iM/2)c.

In fact, if there exists x ∈ Dε such that dM(x, xM) < iM/2; there is z ∈ CxM such
that dM(x, z) < ε; then dM(xM , z) ≤ dM(xM , x) + dM(x, z) < iM which contradicts
the definition of iM . Let γx be the geodesic considered above. Then x 6∈ Cy with
y = γx(iM/4).

Now introduce the stopping times σq by σ0 = 0 and

σq = inf
{
t > σq−1; dM(π(rt), π(rσq−1)) = ε

}
.

Let t > 0 and set tq = t ∧ σq. Then

(6.3) ρ(rt)− ρ(r0) =
+∞∑
q=1

(
ρ(rtq)− ρ(rtq−1)

)
.

(i) If π(rtq−1) 6∈ Dε, then for s ∈ [tq−1, tq], π(rs) 6∈ CxM . Applying Itô formula, we
have

(6.4) ρ(rtq)− ρ(rtq−1) =
n∑
k=1

∫ tq

tq−1

(LAk
ρ)(rs) dW

k
s +

∫ tq

tq−1

(Lsρ)(rs) ds,
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where Ls =
1

2
∆O(M) + LVs

(ii) Set xq = π(rtq). If xq−1 ∈ Dε, then by discussion at beginning, there is yq−1 on a

distance-minimizing geodesic γ connecting xM and xq−1 such that dM(xM , yq−1) =
iM
4

and xq−1 6∈ Cyq−1 and for s ∈ [tq−1, tq],

dM(π(rs), xq−1) ≤ ε < ε0.

Therefore π(rs) 6∈ Cyq−1 . Let ρ∗q(r) = dM(π(r), yq−1). Applying Itô formula to ρ∗q, we
have

ρ∗q(rtq)− ρ∗q(rtq−1) =
n∑
k=1

∫ tq

tq−1

(LAk
ρ∗q)(rs) dW

k
s +

∫ tq

tq−1

(Lsρ
∗
q)(rs) ds.

On one hand

dM(xM , xq−1) = dM(xM , yq−1) + dM(xq−1, yq−1) or ρ(rtq−1) =
iM
4

+ ρ∗q(rtq−1),

and on the other hand

dM(xM , xq) ≤ dM(xM , yq−1) + dM(xq, yq−1) or ρ(rtq) ≤
iM
4

+ ρ∗q(rtq).

It follows that
ρ(rtq)− ρ(rtq−1) ≤ ρ∗q(rtq)− ρ∗q(rtq−1).

Therefore there exists L̂q ≥ 0 such that

ρ(rtq)− ρ(rtq−1) = ρ∗q(rtq)− ρ∗q(rtq−1)− L̂q.
Define

τR = inf{t > 0, dM(xM , π(rt)) > R}.
As did in [28], page 95, we get

ρ(rt∧τR) − ρ(r0) = βt∧τR +

∫ t∧τR

0

(Lsρ)(rs) ds− L̂ε(t ∧ τR) +Rε(t ∧ τR),

where

L̂ε(t) =
+∞∑
q=1

L̂q1Dεπ((rtq−1))

which converges to L̂(t) as ε→ 0. The term Rε(t) = mε(t) + bε(t) with mε(t) the same
as in [28], page 95, so that

E(|mε(t)|2) ≤ 4

∫ t

0

E(1D2ε(π(rs))) ds.
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Therefore for any compact subset K ⊂ B(xM , R),

∫
π−1(K)

E(|mε(t ∧ τR)|2) dr0 ≤ 4

∫ t

0

∫
π−1(K)

E(1D2ε(π(rs∧τR))) dr0ds

→ 4

∫ t

0

∫
π−1(K)

E(1CxM
(π(rs∧τR))) dr0ds ≤ 4

∫ t

0

∫
M

1CxM
(x)dxds = 0.

The term bε(t) has to be modified such that

bε(t) =
+∞∑
q=1

[∫ tq

tq−1

(
Lsρ

∗
q(rs)− Lsρ(rs)

)
ds
]
1Dε(π(rtq−1)).

By (3.13) and (3.15), we have to control the term 1/ρ. For xq−1 ∈ Dε and for
s ∈ [tq−1, tq],

dM(xM , xs) ≥ dM(xM , xq−1)− dM(xq−1, xs) ≥
iM
2
− ε ≥ 3iM

8
,

and

dM(yq−1, xs) ≥ dM(xM , xs)− dM(xM , yq−1) ≥ 3iM
8
− iM

4
=
iM
8
.

Therefore, according to (3.14), since xs = π(rs) ∈ D2ε, there exists a constant α > 0
such that∫ tq

tq−1

∣∣∣(Lsρ∗q(rs)− Lsρ(rs)
)∣∣∣ ds1Dε(π(rtq−1)) ≤ α

∫ tq

tq−1

(1 + |Vs(rs)|)1D2ε(π(rs)) ds.

It follows that

(6.5) E(|bε(t)|) ≤ αE
(∫ t

0

(1 + |Vs(rs)|)1D2ε(π(rs)) ds
)
.

Now let dµ(r0) be the probability measure defined in (3.18), integrating with respect
to it, we get ∫ t

0

∫
π−1(K)

E
(

(1 + |Vs(rs)|)1D2ε(π(rs))1(s<τR)

)
dµ(r0)ds

→
∫ t

0

∫
π−1(K)

E
(

(1 + |Vs(rs)|)1CxM
(π(rs))1(s<τR)

)
dµ(r0)ds

≤
√
t
(∫ t

0

∫
M

|vs(x)|21CxM
(x) dxds

)1/2

= 0,

under the hypothesis (3.19). The proof of Proposition 3.2 is complete. �
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7. Final remarks

1) The condition

Ric(x) ≥ −C
(
1 + d2

M(x)
)

is sufficient to insure the non-explosion of the Brownian motion on M , but seems too
weak to guarantee the good behavior of the heat semi-group on differential forms. For
example, the key upper bound (5.3) is not established.

2) On manifolds, there are several choices for Laplacian operator on vectors. On [15],
D.G. Ebin and J.E. Marsden introduced the so-called deformation operator, denoted
by �̂, which admits expression

�̂A = −∆A− Ric(A) if div(A) = 0.

Here the Ricci tensor has an opposite sign, in contrast with the De Rham-Hodge
operator �. In the paper [41], V. Pierfelice considered NS equation with �̂. Major
geometric assumptions in [41] are the non-positiveness of sectional curvature and for
two positive constants c1 and c2,

−c1 ≤ Ric ≤ −c2.

The well-posedness of mild solutions in the sense of Kato-Fujita has been established.

ACKNOWLEDGEMENTS. The two authors are grateful to the referee for his careful
reading and useful suggestions.
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large initial data, Ann. sci. École Norm. Sup., 39 (2006), 679-698.
[11] F. Cipriano, A.B. Cruzeiro, Navier-Stokes equations and diffusions on the group of homeomor-

phisms of the torus, Comm. Math. Phys. 275 (2007), 255–269.
[12] P. Constantin, G. Iyer, A stochastic Lagrangian representation of the three-dimensional incom-

pressible Navier-Stokes equations, Comm. Pure Appl. Math., 61 (2008), 330–345.
[13] B. Driver, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact

manifold, J. Funct. Anal., 109 (1992), 272-376.
[14] B. Driver, A. Thalmaier, Heat equation derivative formulas for vector bundles, J. Funct. Analysis,

183 (2001), 42-108.
[15] D.G. Ebin, J.E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,

Ann. of Math. 92 (1970), 102–163.
[16] K.D. Elworthy, Stochastic differential equations on manifolds, London Math. Soc. Lect. Note, 70,

Cambridge university Press, 1982.
[17] J. Eells, K. D. Elworthy, Stochastic dynamical system, Control theory and topics in functional

analysis, III, Intern. atomic energy agency, Vienna, 1976, 179-185.
[18] K.D. Elworthy, Y. Le Jan, X.M. Li, On the geometry of diffusion operators and stochastic flows,

Lecture Notes in Mathematics, 1720, Springer-Verlag, 1999.
[19] K. D. Elworthy, X.M. Li, Bismut formulae for differential forms, C. R. Acad. Sci. Paris, 327

(1998), 87-92.
[20] S. Fang, Nash embedding, shape operator and Navier-Stokes equation on a Riemannian manifold,

Acta Math. Appl. Sin., Engl. Ser. 36 (2020), no. 2, 237-252.
[21] S. Fang, D. Luo, Constantin and Iyer’s representation formula for the Navier-Stokes equations

on manifolds, Potential Analysis, 48 (2018), 181–206.
[22] S. Fang, H. Li and D. Luo, Heat semi-group and generalized flows on complete Riemannian

manifolds, Bull. Sci. Math., 135 (2011), 565-600.
[23] S. Fang, P. Malliavin, Stochastic analysis on the path space of a Riemannian manifold, J. Funct.

Anal., 118 (1993), 249-274.
[24] S. Fang, Z. Qian, Vorticity, Helicity, Intrinsic geometry for Navier-Stokes equations, hal-02312072,

arXiv: 1910.05175.2019.
[25] U. Frisch Turbulence, the legacy of A.N. Kolmogorov, Cambridge University Press, 1995.
[26] I. Gallagher, Le problème de Cauchy pour les équations de Navier-Stokes, Facettes mathématiques
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