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Abstract. We study a statistical manifold (N , gF ,∇A,∇A∗) of multivariate normal dis-
tributions, where gF is the Fisher metric and ∇A is the Amari-Chentsov connection and
∇A∗ is its conjugate connection. We will show that it admits a solvable Lie group structure
and moreover the Amari-Chentsov connection ∇A on (N , gF ) will be characterized by the
conjugate symmetry, i.e., a curvatures identity R = R∗ of a connection ∇ and its conjugate
connection ∇∗.

Introduction

An n-variate normal distribution is determined by its covariance matrix, which is a positive
definite symmetric matrix of order n, Sym+(n,R), and its mean vector, which is an n-
dimensional real vector, Rn. Therefore, the family N of n-variate normal distributions can
be identified with Rn × Sym+(n,R). For tangent vectors X, Y, Z of the manifold N at
θ = (µ,Σ) ∈ Rn × Sym+(n,R), we define a Riemannian metric gF and a symmetric tensor
field CA of type (0, 3) (cubic form) by

gF (X, Y ) =

∫
Rn

p(x, θ)(X log p(x, θ))(Y log p(x, θ))dx,

CA(X, Y, Z) =

∫
Rn

p(x, θ)(X log p(x, θ))(Y log p(x, θ))(Z log p(x, θ))dx,

where p(x, θ) is the probability density function of the n-variate normal distribution given
by

(0.1) p(x, θ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

It is clear that CA is symmetric about all arguments. For a constant α, we define an affine
connection ∇A(α) by

(0.2) gF (∇A(α)
X Y, Z) = gF (∇̂XY, Z)−

α

2
CA(X, Y, Z),
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where ∇̂ is the Levi-Civita connection of the Riemannian metric gF . The metric gF is
called the Fisher metric and the torsion-free affine connection ∇A(α) is called the Amari-
Chentsov α-connection. In particular we call ∇A(α) with α = 1 (resp. α = −1) the
Amari-Chentsov connection (resp. Amari-Chentsov conjugate connection), i.e., XgF (Y, Z) =
gF (∇A

XY, Z) + g(Y,∇A∗
X Z) holds, and abbreviate it as ∇A (resp. ∇A∗). The cubic form CA

is called the Amari-Chentsov cubic form. Then a quartet (N , gF ,∇A,∇A∗) becomes a sta-
tistical manifold, see section 1 for a precise definition of statistical manifolds. We sometimes
abbreviate ∇A∗ in the definition of a statistical manifold, i.e., a statistical manifold is de-
noted by (N , gF ,∇A), because ∇A∗ is determined from the conjugate relation. Note that
∇A(α) and ∇A(−α) are conjugate each other for any α ∈ R.

In fact if we replace the probability density function in (0.1) by other density function, then
we obtain an another statistical manifold modeled on the distribution. An important feature
of the probability density function of n-variate normal distribution in (0.1) is that it is an
exponential family and thus both ∇A and ∇A∗ are flat and torsion free, i.e., (N , gF ,∇A,∇A∗)
admits the dually flat structure, and it is important in information geometry, see [1]. Note
that the explicit form of the Fisher metric and the Amari-Chentsov α-connection of elliptic
distributions, which are generalizations of multivariate normal distributions, was computed
in [10].

Recently, in [3] it has shown that the statistical manifold (N , gF ,∇A) for n = 1, i.e., in case
of the normal distribution, admits a solvable Lie group structure: The manifold N admits a
solvable Lie group structure, and gF and ∇A are a left-invariant metric and a left-invariant
connection on N , respectively. Therefore notion of statistical Lie groups has been naturally
introduced, see Definition 1.6. It is evident that for the solvable Lie group with the Fisher
metric (N , gF ), an affine connection ∇ such that (N , gF ,∇) becomes a statistical Lie group
is not unique. In fact it is easy to give many such examples, since left-invariant connections
are determined at one point and the statistical structure condition is easily satisfied, see [6]
for general construction about homogeneous statistical manifolds. So a fundamental problem
is how to characterize the Amari-Chentsov α-connection ∇A(α) on (N , gF ). An answer for
(N , gF ) for n = 1 was given in [3] by the conjugate symmetry, i.e., if R = R∗ holds, where
R and R∗ are respectively curvatures of ∇ and ∇∗, then ∇ has to be ∇A(α) for some α ∈ R.
Note that (N , gF ,∇A(α)) clearly satisfies the conjugate symmetry condition, and notion of
the conjugate symmetry was first defined in [9].

In this paper, we will generalize the results of [3] as follows: We will first show that the
statistical manifold (N , gF ,∇A(α)) admits a statistical Lie group structure, in particular N
becomes a solvable Lie group and the Fisher metric gF becomes left-invariant, Theorem 2.3.
This is a straightforward generalization of [3] which has shown the same result in case of
n = 1. We will next show that the Amari-Chentsov α-connection ∇A(α) will be characterized
by the conjugate symmetry of (N , gF ,∇), Theorem 3.4. We emphasize that this result is
not a straightforward generalization of [3]. In case of n = 1, the covariant matrix Σ is just a
scalar matrix and it is easy to derive the conjugate symmetry conditions on coefficients of a
left-invariant connection, i.e., they are fewer linear equations among the coefficients. On the
other hand, our case is clearly more complicated, i.e., the covariant matrix Σ is a positive
definite symmetric matrix of order n and the conjugate symmetry conditions give a large
number of linear equations among the coefficients. We will therefore introduce a canonical
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orthonormal basis on the Lie algebra of N , see section 2 and we will solve successfully these
equations and will show there exists exactly 1-parameter family of solutions which is the
Amari-Chentsov α-connection, see section 3 in details.

As a matter of fact, we consider a special class of Riemannian manifolds, i.e., the n-variate
normal distributions N and the Fisher metric gF , and moreover, an affine connection is
assumed to be left-invariant with respect to the solvable Lie group structure of (N , gF ).
These assumptions are essential: First if we replace (N , gF ) by a general Lie group G with
left-invariant metric g, then the characterization is not true, i.e., there are many left-invariant
connections (depending on the dimension of kernel of linear equations) such that (G, g,∇)
are conjugate symmetric. Moreover, it is not true even if we restrict g = gF , i.e., the metric
Lie group (G, gF ) comes from a certain probability distribution. There are many conjugate
symmetric statistical Lie groups (G, gF ,∇) which are ∇ ≠ ∇A(α) for any α ∈ R. The authors
would not know that this characterization holds for other particular statistical Lie groups
which are determined from probability distributions.

The paper is organized as follows: After some preliminaries in section 1, in section 2, we will
show that the statistical manifold (N , gF ,∇A) is a statistical Lie group, and in particular,
the manifold N admits a solvable Lie group structure. Moreover, we will introduce a special
orthonormal basis of the Lie algebra of N . In section 3, we will first obtain the coefficients
of a left-invariant connection with respect to the basis. We will compute linear equations
among the coefficients, determined from the conjugate symmetry of the statistical manifold,
and finally prove that the left-invariant connection is the Amari-Chentsov α-connection.

1. Preliminaries

Let M be a manifold, g a Riemannian metric and ∇ a torsion free affine connection on M .
We define a tensor field C of type (0, 3) by

C(X, Y, Z) = (∇Xg)(Y, Z),(1.1)

where X, Y, Z ∈ X (M). If the tensor field C is symmetric, then this pair (g,∇) is called a
statistical structure, and C is called the cubic form. A manifold M together with a statistical

structure is called a statistical manifold, and it will be denoted by a triad (M, g,∇). Let ∇̂
be the Levi-Civita connection of the Riemannian metric g, and we define a tensor field K by

K(X, Y ) = ∇XY −∇̂XY . We will call this tensor field K the difference tensor of (M, g,∇).
In addition, we define a tensor field KX of type (1, 1) by KXY := K(X, Y ). Since the affine

connections ∇ and ∇̂ are torsion free, K is symmetric, i.e., K(X, Y ) −K(Y,X) = 0. The
conjugate connection ∇∗ of ∇ with respect to the Riemannian metric g is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ),(1.2)

where X, Y, Z ∈ X (M). Note that the Levi-Civita connection ∇̂ is the mean of the affine
connection ∇ and its conjugate affine connection ∇∗, i.e.,

∇̂ =
∇+∇∗

2
.(1.3)
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Moreover,

KX =
∇X −∇∗

X

2
(1.4)

holds. It is easy to see that (∇∗
Xg)(Y, Z) = −C(X, Y, Z) holds and thus (M, g,∇) is a

statistical manifold if and only if (M, g,∇∗) is a statistical manifold. The following results
are basic, see [2, section 1].

Lemma 1.1. For a statistical manifold (M, g,∇), the following identities hold:

(1) C(X, Y, Z) = −2g(K(X, Y ), Z),

(2) (∇̂XC)(Y, Z,W ) = −2g((∇̂XK)(Y, Z),W ).

Remark 1.2. Suppose that a totally symmetric tensor field C of type (0, 3) is given on a
Riemannian manifold (M, g), and we define the tensor field K of (1,2) by C(X, Y, Z) =

−2g(K(X, Y ), Z) and define the affine connection ∇ by ∇XY = K(X, Y ) − ∇̂XY . Then
the triplet (M, g,∇) becomes a statistical manifold. Thus a Riemannian manifold (M, g)
together with a totally symmetric tensor field C of type (0, 3) can be identified with a
statistical manifold (M, g,∇). Note that (gF ,∇A(α)) in (0.2) is thus a statistical structure
on N .

Let R be the curvature tensor field of the connection ∇, i.e.,

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,(1.5)

and let R∗ be the curvature tensor field of its dual connection ∇∗. We define a conjugate
symmetry for a statistical manifold.

Definition 1.3 (section 3 in [9]). If the curvature tensor fields R and R∗ satisfy R = R∗, then
a statistical manifold (M, g,∇) is called the conjugate symmetric.

We define an affine connection ∇(α) by

∇(α) := ∇̂+ αK,(1.6)

where α is a real constant. The triplet (M, g,∇(α)) is also a statistical manifold. We call the
set of the affine connections {∇(α)}α∈R the α-connections. Note that the affine connection
∇(α) is the conjugate connection of the affine connection ∇(−α). Moreover, it follows that
∇(1) = ∇ and ∇(−1) = ∇∗. Let R(α) denote the curvature tensor of the affine connection
∇(α).

Lemma 1.4 (Proposition 2.8 in [7]). If a statistical manifold (M, g,∇) is conjugate sym-
metric, then the statistical manifold (M, g,∇(α)) is also conjugate symmetric.

Remark 1.5. It is well known that if a statistical manifold is given by an exponential family,
the Fisher metric gF and the Amari-Chentsov connection ∇A, (M, gF ,∇A,∇A∗) as in intro-
duction, then the curvatures vanish, i.e., R = R∗ = 0 and it has a dually flat structure,
which is of course a special case of conjugate symmetric statistical manifolds. Moreover,
from Lemma 1.4, the statistical manifold (M, gF ,∇A(α)) given by the Amari-Chentsov α-
connection is conjugate symmetric for all α ∈ R. Note that the curvature R(α) = R(α)∗ does
not vanish for α ̸= ±1 in general. Please see [1] for details.
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We now recall notion of statistical Lie groups defined in [3].

Definition 1.6. Suppose that G is a Lie group. If a triplet (G, g,∇) is a statistical manifold
and both the metric g and the connection ∇ are left invariant, then the statistical manifold
(G, g,∇) will be called a statistical Lie group.

2. The statistical manifold of multivariate normal distributions

In this section, we will show that the family of n-variate normal distributions admits a
solvable Lie group structure. Recall that the probability distribution function of the n-
variate normal distribution p is written as

p(x;µ,Σ) =
1√

(2π)n det(Σ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
,(2.1)

using its mean vector µ ∈ Rn and its covariance matrix Σ ∈ Sym+(n,R), where Sym+(n,R)
denotes the set of all positive definite symmetric matrices of size n. Let N = Rn ×
Sym+(n,R). The Fisher metric gF and the Amari-Chentsov connection ∇A on N given
in introduction can be computed as follows:

Lemma 2.1 (section 3 and section 4 in [10]). Let gF be the Fisher metric and CA be the
Amari-Chentsov cubic form of N . If u, v, w are coordinate vector fields in the µ-direction
and X, Y, Z are coordinate vector fields in the Σ-direction, then the following identities hold:

(2.2)


gF(Σ,µ)(u, v) = uTΣ−1v,

gF(Σ,µ)(u,X) = 0,

gF(Σ,µ)(X, Y ) = 1
2
tr(Σ−1XΣ−1Y ),

and

(2.3)


CA

(Σ,µ)(u, v, w) = 0,

CA
(Σ,µ)(X, v, w) = vTΣ−1XΣ−1w,

CA
(Σ,µ)(X, Y,w) = 0,

CA
(Σ,µ)(X, Y, Z) = tr(Σ−1XΣ−1Y Σ−1Z).

We now define

R :=

{
T ∈ GL(n,R) | T is an upper triangular matrix

with positive diagonal entries.

}
,(2.4)

and

Affs(n,R) := R⋉Rn.

Then the group Affs(n,R) is solvable and acts transitively on N by the action

(A, b) · (Σ, µ) = (AΣAT , Aµ+ b),(2.5)

where A ∈ R and b ∈ Rn. Moreover, the tangent action of (A, b) ∈ Affs(n,R) on the tangent
bundle TN is given by

(A, b) · (X, v) = (AXAT , Av),(2.6)

where (Σ, µ) ∈ N and (X, v) ∈ T(Σ,µ)N .
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Proposition 2.2 (section 3.2 in [4]). The action of Affs(n,R) on N is simply transitive. In
particular, Affs(n,R) and N are isomorphic as an Affs(n,R)-manifold.

From now on, through this paper, we assume that N has the solvable Lie group structure
via the isomorphism ϕ. Note that in Proposition 2.2, the isomorphism ϕ : Affs(n,R) → N
is given by

ϕ((A, b)) = (AAT , b),(2.7)

and it follows that ϕ is a bijection from the uniqueness of the Cholesky decomposition
Σ = AAT [5, Corollary 7.2.9]. With these preparations, we obtain the following theorem.

Theorem 2.3. The triplet (N , gF , CA) is a statistical Lie group.

Proof. From Proposition 2.2, the manifold N has the Lie group structure. Using the Lemma
2.1, we see that

gF(AΣAT ,Aµ+b)(Au,Av) = (Au)T (AΣAT )−1(Av)

= uTΣ−1v

= gF(Σ,µ)(u, v),

and

gF(AΣAT ,Aµ+b)(AXAT , AY AT ) =
1

2
tr((AΣAT )−1AXAT (AΣAT )−1AY AT )

=
1

2
tr(Σ−1XΣ−1Y )

= gF(Σ,µ)(X, Y ).

Thus the Fisher metric gF is left invariant. Moreover, we see that

CA
(AΣAT ,Aµ+b)(AXAT , Av,Aw) = (Av)T (AΣAT )−1AXAT (AΣAT )−1Aw

= vTΣ−1XΣ−1w

= CA
(Σ,µ)(X, v, w),

and

CA
(AΣAT ,Aµ+b)(AXAT , AY AT , AZAT )

=
1

2
tr((AΣAT )−1AXAT (AΣAT )−1AY AT (AΣAT )−1AZAT )

=
1

2
tr(Σ−1XΣ−1Y Σ−1Z)

= CA
(Σ,µ)(X, Y, Z).

Thus the cubic form is left invariant. This completes the proof. □

The statistical Lie group N ∼= Affs(n,R) can be realized with

Affs(n,R) = R⋉Rn =

{
T =

(
A b
0 1

) ∣∣∣∣ A ∈ R, b ∈ Rn

}
,
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where R is defined in (2.4). Note that for n = 1, A is the standard deviation and b is the
mean. Since an arbitrary element T ∈ Affs(n,R) is an upper triangular matrix with positive
diagonal entries, and therefore N is a solvable Lie group.

Let affs(n,R) (resp. N) be the Lie algebra of Affs(n,R) (resp. N ), that is, the tangent space
of Affs(n,R) (resp. N ) at the unit element (In, 0), where In is the n× n identity matrix. It
is easy to see that

affs(n,R) =
{(

U u
0 0

) ∣∣∣∣ U ∈ UT (n,R), u ∈ Rn

}
.

Here, UT (n,R) denotes the set of n × n upper triangular matrices. For simplicity, we will

denote

(
U u
0 0

)
by (U, u). The differential of ϕ in (2.7) at (In, 0) is given by

dϕ(In,0)(U, u) = (U + UT , u), (U, u) ∈ affs(n,R).(2.8)

By the equation (2.8), we obtain the Lie algebra isomorphism affs(n,R) ∼= N, and we will
identify affs(n,R) and N. Considering gF and CA at (In, 0), we obtain the inner product
and the symmetric tensor of type (0, 3) on N. For simplicity of notation, we write gF and
CA instead of gF(In,0) and CA

(In,0)
.

Lemma 2.4. For (U, 0), (V, 0), (W, 0), (0, u), (0, v) ∈ N, the following identities hold:

gF ((0, u), (0, v)) = uTv,(2.9)

gF ((U, 0), (V, 0)) = tr(UV ) + tr(UV T ),(2.10)

CA((U, 0), (0, u), (0, v)) = uT (U + UT )v,(2.11)

CA((U, 0), (V, 0), (W, 0)) = tr((U + UT )(V + V T )(W +W T ))(2.12)

Proof. From the Lemma 2.1 and the equation (2.8), we can see that

gF ((0, u), (0, v)) = gF(In,0)(u, v) = uT I−1
n v = uTv,

and

gF ((U, 0), (V, 0)) = gF(In,0)(U + UT , V + V T ) =
1

2
tr(I−1

n (U + UT )I−1
n (V + V T )

= tr(UV ) + tr(UV T ),

and then we obtain the identities (2.9) and (2.10). By a similar computing, we also obtain
the identities (2.11) and (2.12). □

We define a set of indices I by

I = {i | 1 ≤ i ≤ n, i ∈ N} ∪ {(i, j) | 1 ≤ i ≤ j ≤ n, i, j ∈ N}.(2.13)

Moreover, we define (n+ 1)× (n+ 1) matrices ei, eij, and eii (i < j) by setting

(2.14)


ei : (i, n+ 1)-th entry is 1 and 0 otherwise,
eij : (i, j)-th entry is 1 and 0 otherwise,
eii : (i, i)-th entry is 1√

2
and 0 otherwise.

Definition 2.5. For i ∈ I and (i, j) ∈ I, we refer to the (n + 1) × (n + 1) matrix ei as the
mean-direction vector and the (n+1)× (n+1) matrix eij as the covariance-direction vector.
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For simplicity of notation, we will denote eα by eij when α = (i, j). Clearly, the matrices
{eα}α∈I are linearly independent and generate the Lie algebra N, and thus these are the
basis of the Lie algebra N. From Lemmas 2.1 and 2.4, it is easy to compute that

gF (ei, ej) = δij,

gF (ei, ejk) = 0,

gF (eii, ejj) = 2 tr(eiiejj) = δij,

gF (eij, ekk) = 2 tr(eijekk) =
√
2δikδjk = 0, (i < j),

gF (eij, ekl) = tr(eijekl) + tr(eije
T
kl)

= δilδjk + δikδjl = δikδjl, (i < j and k < l),

where δij is Kronecker delta, and thus the matrices {eα}α∈I are the orthonormal basis of
the Lie algebra N. We now compute the value of the cubic form CA about the orthonormal
basis. We define aij ∈ {1, 1√

2
} by aij = 1− δij +

1√
2
δij. Then using again Lemma 2.4, we can

compute

CA(eij, ek, el) = eTk e
T
ijel + eTk eijel

= aij(δjkδil + δikδjl),

and thus CA(eij, ek, el) (i ≤ j and k ≤ l) is non-zero if i = k and j = l, and zero otherwise.
Moreover, we can compute

CA(eij, ekl, ers) = tr((eTij + eij)(e
T
kl + ekl)(e

T
rs + ers))

= aijaklars(δilδksδrj + δilδkrδsj + δjlδksδri

+ δikδlsδrj + δikδlrδsj + δjlδkrδsi + δjkδlsδri + δjkδlrδsi),

and thus CA(eij, ekl, ers) is nonzero if CA(eij, ekl, ers) is equal to

CA(eii, eii, eii), CA(eii, eij, eij), CA(ejj, eij, eij) or CA(eij, ejk, eik),

and zero otherwise. By the above and Lemma 2.1, the combination of indices, where the
Amari-Chentsov cubic form CA is non-zero, are

(2.15)

{
CA(eii, ei, ei) =

√
2, CA(eij, ei, ej) = 1, CA(eii, eii, eii) = 2

√
2,

CA(eii, eij, eij) = CA(ejj, eij, eij) =
√
2, CA(eij, ejk, eik) = 1.

3. A characterization of the alpha-connections on the statistical
manifold of normal distributions

In this section, we will prove the main theorem of this paper, i.e., we will give a characteriza-
tion of the Amari-Chentsov α-connections on the statistical manifold of normal distributions.
For a Lie algebra g with inner product ⟨ , ⟩, we define a bilinear map U : g × g → g as
follows ([8, Chapter X.3]);

2⟨U(X, Y ), Z⟩ = ⟨[Z,X], Y ⟩+ ⟨X, [Z, Y ]⟩.(3.1)

It is easy to see that the bilinear map U is symmetric.
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Lemma 3.1 (Chapter X.3 in [8]). Let G be a Lie group with a left invariant metric ⟨ , ⟩.
Then the Levi-Civita connection ∇̂ for ⟨ , ⟩ is given by

∇̂XY =
1

2
[X, Y ] + U(X, Y ) for X, Y ∈ g.(3.2)

From the form of the orthonormal basis {eα}α∈I , for i < j < k, the bracket is

[ei, eii] = − 1√
2
ei, [ej, eij] = −ei, [eii, eij] =

1√
2
eij,

[eij, ejj] =
1√
2
eij, [eij, ejk] = eik,

and zero for other index patterns.

Lemma 3.2. For i < j < k, the following holds, and the other index patterns are zero;

U(ei, ei) =
1√
2
eii, U(ei, eii) = − 1

2
√
2
ei,

U(ei, ej) =
1

2
eij, U(ei, eij) = −1

2
ej,

U(eii, eij) = − 1

2
√
2
eij, U(eij, eij) =

1√
2
eii −

1√
2
ejj,

U(eij, ejj) =
1

2
√
2
eij, U(eik, ejk) =

1

2
eij,

U(eij, eik) = −1

2
ejk.

Proof. First, we obtain U(ei, ei). From the equation (3.1),

2gF (U(ei, ei), e•) = gF ([e•, ei], ei) + gF ([e•, ei], ei)

= 2gF ([e•, ei], ei)

and {eα}α∈I is an orthonormal basis, and from the result of the bracket product, the right-
hand side is not zero only when e• = eii. Therefore, we obtain

U(ei, ei) =
1√
2
eii.

The other patterns are also calculated in the same way. □

From Lemmas 3.1 and 3.2, we obtain the following proposition.

Proposition 3.3. For indices 1 ≦ i < j < k ≦ n, the Levi-Civita connection ∇̂ can be
computed as follows, and the other index patterns are zero;
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

∇̂eiei =
1√
2
eii, ∇̂eiej = ∇̂ejei =

1
2
eij, ∇̂eieii = − 1√

2
ei,

∇̂eieij = −1
2
ej, ∇̂ejeij = −1

2
ei, ∇̂eijei = −1

2
ej,

∇̂eijej =
1
2
ei, ∇̂eijeii = − 1√

2
eij, ∇̂eijejj =

1√
2
eij,

∇̂eijejk =
1
2
eik, ∇̂ejkeij = −1

2
eik, ∇̂eijeik = ∇̂eikeij = −1

2
ejk,

∇̂eikejk = ∇̂ejkeik =
1
2
eij ∇̂eijeij =

1√
2
eii − 1√

2
ejj.

(3.3)

With these preparations, we prove the main theorem of this paper.

Theorem 3.4. Let N be the family of n-variate normal distributions with the Lie group
structure via Proposition 2.2, gF the left invariant Fisher metric given by (2.2), ∇ a torsion
free affine connection such that (N , gF ,∇) is a statistical Lie group, C the cubic form and K
the difference tensor with respect to ∇. Then the following properties are mutually equivalent:

(1) The affine connection ∇ is an Amari-Chentsov α-connection.
(2) The statistical manifold (N , gF ,∇) is conjugate symmetric.
(3) ∇C is totally symmetric.

(4) ∇̂C is totally symmetric.

(5) ∇̂K is totally symmetric.

Here, ∇̂ is the Levi-Civita connection of gF .

Proof. First, note that the equivalence of (2), (3), (4), and (5) holds by Lemma 1 in [2].
(1) ⇒ (2): Since N is an exponential family, R(1) = R(−1) = 0 holds. Therefore, the
statistical manifold (N , gF ,∇) is conjugate symmetric from Lemma 1.4.
(5) ⇒ (1): For α, β, γ ∈ I, we define a family {Kγ

αβ} of constants by

K(eα, eβ) =
∑
γ∈I

Kγ
αβeγ.

From the Lemma 1.1 (1) and the fact that {eα}α∈I is an orthonormal basis, we have

C(eα, eβ, eγ) = −2g(K(eα, eβ), eγ) = −2Kγ
αβ,

and from the symmetry of the cubic form C, the symmetry of K follows:

Kγ
αβ = Kγ

βα = Kα
βγ = Kα

γβ = Kβ
γα = Kβ

αγ.

From now on, we will use this symmetry of K without mentioning it. We will show that all
but six combinations

(3.4) K
(i,i)
(i,i)(i,i), K

(i,i)
(i,j)(i,j), K

(j,j)
(i,j)(i,j), K

(i,k)
(i,j)(j,k), Ki

i(i,i), Ki
j(i,j)

are zero. Then, we will show that the above combinations can be written in terms of a single
real parameter p, which gives the Amari-Chentsov α-connection.

Remark. We give a graphical explanation of whether Kγ
αβ is zero or not. For any i ≤ j,

let white vertices be indices i and black vertices indices (i, j), and if there are the same
characters between indices, the corresponding vertices are connected by edges. Here, we
assume that once the characters are chosen, they are no longer chosen. Then, a graph can
be obtained for each coefficient Kγ

αβ. If the white vertices have one edge, the black vertices
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have two edges and the graph is connected, the corresponding coefficient is not equal to zero,
and otherwise zero. Figure 1 shows the graph where the corresponding coefficients are not
equal to zero, and Figure 2 shows the graph where the corresponding coefficients are equal
to zero. Since the graph of Figure 2a is not connected and the graph of Figure 2b has a
black vertex which has one edge, then the corresponding coefficients are equal to zero. Note
that this is only an intuitive explanation and is not to be used for the proof.

(a) The graph of Ki
j(i,j). (b) The graph of K

(i,j)
(j,k)(i,k).

Figure 1. Examples of non-zero coefficients.

(a) The graph of Ki
i(j,j). (b) The graph of Ki

(i,j)(i,j).

Figure 2. Examples of coefficients which are equal to zero.

The actual proof of Theorem 3.4 will be divided into the five steps:

Step 1: We show Ki
(j,k)(l,m) = 0.

Step 2: We show Ki
jk = 0.

Step 3: We determine K
(i,j)
(k,l)(m,s).

Step 4: We determine Ki
j(k,l).

Final Step: We determine all K in (3.4).

Note that in each step, we need to use the previous steps.

Step 1 (Ki
(j,k)(l,m)): We will show that the coefficients are equal to zero if the indices are

Ki
(j,k)(l,m). First, we will show that the coefficients are equal to zero if the indices areKi

(j,j)(k,k).

From the condition (5), we have

(∇̂eiK)(ejj, ekk) = (∇̂ejjK)(ei, ekk).(3.5)

From Proposition 3.3, the following statement follows;

all the derivatives in ∇̂eii-directions are zero.(3.6)
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From now on, we will use the condition (5) and Proposition 3.3 without mentioning it. Then,
from the equation (3.5) and (3.6), we compute

0 = (∇̂ejjK)(ei, ekk) = (∇̂eiK)(ejj, ekk)

= ∇̂ei(K(ejj, ekk))−K(∇̂eiejj, ekk)−K(ejj, ∇̂eiekk)

=
∑
α∈I

Kα
(j,j)(k,k)∇̂eieα −K(∇̂eiejj, ekk)−K(ejj, ∇̂eiekk),

and we can see that∑
α∈I

Kα
(j,j)(k,k)∇̂eieα = K(∇̂eiejj, ekk) +K(ejj, ∇̂eiekk).(3.7)

If i ̸= j and i ̸= k, ∇̂eiejj = 0 and ∇̂eiekk = 0 hold, and thus the right-hand side of the
equation (3.7) is equal to zero. Moreover, the eii component of the left-hand side of the
equation (3.7) is 1√

2
Ki

(j,j)(k,k), and then

Ki
(j,j)(k,k) = 0 (i ̸= j and i ̸= k)(3.8)

holds. If i = j and i ̸= k, it follows from the equation (3.7) that∑
α∈I

Kα
(i,i)(k,k)∇̂eieα = K(∇̂eieii, ekk) +K(eii, ∇̂eiekk) = − 1√

2
K(ei, ekk),

and since the eii component of the left-hand side is 1√
2
Ki

(i,i)(k,k) and the eii component of the

right-hand side is − 1√
2
Ki

(i,i)(k,k), we can see that

Ki
(i,i)(k,k) = 0 (i ̸= k).(3.9)

Moreover, if i = j = k, it follows from the equation (3.7) that∑
α∈I

Kα
(i,i)(i,i)∇̂eieα = 2K(∇̂eieii, eii) = −

√
2K(ei, eii),

and since the eii component of the left-hand side is 1√
2
Ki

(i,i)(i,i) and the eii component of the

right-hand side is −
√
2Ki

(i,i)(i,i), we can see that

Ki
(i,i)(i,i) = 0.(3.10)

Thus, from the equations (3.8), (3.9), and (3.10), for any indices i, j and k,

Ki
(j,j)(k,k) = 0(3.11)

holds.
We next show that the coefficients are zero if the indices are Ki

(j,k)(l,l). In a similar manner,

from (3.6), we compute

0 = (∇̂ellK)(ejk, ei) = (∇̂eiK)(ejk, ell)

= ∇̂ei(K(ejk, ell))−K(∇̂eiejk, ell)−K(ejk, ∇̂eiell),

and we can see that

∇̂ei(K(ejk, ell)) = K(∇̂eiejk, ell) +K(ejk, ∇̂eiell).(3.12)
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If i ̸= l, ∇̂eiell = 0, and then the second term of the right-hand side of the equation (3.12)
is equal to zero. Moreover,

∇̂eiejk is equal to 0 or parallel to a mean-direction vector,(3.13)

and then, from the equation (3.11), the eii component of the first term of the right-hand
side is equal to zero. In addition, the eii component of the left-hand side is 1√

2
Ki

(j,k)(l,l), and

therefore, we obtain

Ki
(j,k)(l,l) = 0 (i ̸= l).(3.14)

If i = l, from the equation (3.12), we compute

∇̂ei(K(ejk, eii)) = K(∇̂eiejk, eii) +K(ejk, ∇̂eieii)

= K(∇̂eiejk, eii)−
1√
2
K(ejk, ei).

From the equation (3.11) and (3.13), the eii component of the first term of the right-hand
side is equal to zero. Moreover, the eii component of the left-hand side is 1√

2
Ki

(j,k)(i,i) and

the eii component of the right-hand side is − 1√
2
Ki

(j,k)(i,i), and therefore, we obtain

Ki
(j,k)(i,i) = 0.(3.15)

Thus, from the equation (3.14) and (3.15), for any indices i, j, k and l, it follows that

Ki
(j,k)(l,l) = 0.(3.16)

Then we finally show that the coefficients are zero if the indices are Ki
(j,k)(l,m). Since

Ki
(j,k)(l,m) = 0 for j = k or l = m from the equation (3.16), we suppose that j ̸= k and

l ̸= m. From the condition (5), we have

(∇̂ejkK)(ei, elm) = (∇̂eiK)(ejk, elm).

We compute

(LHS) = ∇̂ejk(K(ei, elm))−K(∇̂ejkei, elm)−K(ei, ∇̂ejkelm).

Since

∇̂ejkei is parallel to a mean-direction vector,(3.17)

∇̂ejkelm is parallel to a covariance-direction vector,(3.18)

and from the equation (3.16), the ejj and ekk component of the second and third term are
equal to zero. Then, the ejj component of the first term is 1√

2
Ki

(j,k)(l,m) and the ekk component

of the first term is − 1√
2
Ki

(j,k)(l,m). We also compute

(RHS) = ∇̂ei(K(ejk, elm))−K(∇̂eiejk, elm)−K(ejk, ∇̂eielm),

and from (3.13) and the equation (3.16), the ejj and ekk components of the second and third
terms are zero. Here, since j and k are different, i is at least different either j or k, so either
ejj or ekk component of the first term is zero. Therefore, compare the ejj and ekk components
of both sides, we can see that

Ki
(j,k)(l,m) = 0 (j ̸= k and l ̸= m).(3.19)
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Thus, from the equations (3.16) and (3.19), for any indices i, j, k, l and m, we obtain

Ki
(j,k)(l,m) = 0.(3.20)

Step 2 (Ki
jk): We will show that the coefficients are also zero if the indices are Ki

jk. First,

we will show that Ki
jk = 0 for the case i < j < k. From the condition (5), we have

(∇̂eiK)(ej, ek) = (∇̂ejK)(ei, ek),

and we compute

(LHS) = ∇̂ei(K(ej, ek))−K(∇̂eiej, ek)−K(ej, ∇̂eiek)

= ∇̂ei(K(ej, ek))−
1

2
K(eij, ek)−

1

2
K(ej, eik),

and since the eii components of the second and third term of the left-hand side are equal to
zero from the equation (3.20), the only eii component of the left-hand side is 1√

2
Ki

jk of the

first term. Moreover, we compute the right-hand side

(RHS) = ∇̂ej(K(ei, ek))−K(∇̂ejei, ek)−K(ei, ∇̂ejek)

= ∇̂ej(K(ei, ek))−
1

2
K(eij, ek)−

1

2
K(ei, ejk),

and as in the left-hand side, the eii components of the second and third terms are equal to
zero, and the eii component is also equal to zero in the first term. Thus, we can see that

Ki
jk = 0 (i < j < k).

Moreover, by permutating i, j and k, we obtain

Ki
jk = 0 (i, j and k are different).(3.21)

Next, we will show that Ki
jj = 0 for the case i < j. From the condition (5), we have

(∇̂eiK)(ej, ej) = (∇̂ejK)(ei, ej).(3.22)

We compute the left-hand side of the equation (3.22)

(LHS) = ∇̂ei(K(ej, ej))− 2K(∇̂eiej, ej)

= ∇̂ei(K(ej, ej))−K(eij, ej),

and the right-hand side of the equation (3.22)

(RHS) = ∇̂ej(K(ei, ej))−K(∇̂ejei, ej)−K(ei, ∇̂ejej)

= ∇̂ej(K(ei, ej))−
1

2
K(eij, ej)−

1√
2
K(ei, ejj).

From the equation (3.20), the eii component of the left-hand side is 1√
2
Ki

jj and the eii
component of the right-hand side is equal to zero, and thus we can see that

Ki
jj = 0 (i < j).(3.23)

In a similar manner, we have

Kj
ii = 0 (i < j).(3.24)
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From the equations (3.23) and (3.24), we obtain

Ki
jj = 0 (i ̸= j).(3.25)

At the end of this step, we will show that Kj
jj = 0. From the equation (3.20) and (3.25),

the eij component of the left-hand side of the equation (3.22) is equal to 1
2
Kj

jj and the eij
component of the right-hand side of the equation (3.22) is equal to zero, and then we obtain

Kj
jj = 0.(3.26)

Thus, from the equations (3.21), (3.25) and (3.26), we can see that

Ki
jk = 0.(3.27)

Step 3 (K
(i,j)
(k,l)(m,s)): We consider the coefficients which are K

(i,j)
(k,l)(m,s). In this case, some

coefficients are equal to zero and other are not. First, we will show that K(ejj, ekk) = 0 if
j ̸= k. In the case of n = 2, it automatically follows that

K
(l,m)
(j,j)(k,k) is zero if either l or m is different from both j and k,(3.28)

since no such l and m can be taken.

Suppose that n ≥ 3, i ̸= j and i ̸= k. From (3.6), we compute

0 = (∇̂ejjK)(ei, ekk) = (∇̂eiK)(ejj, ekk)

= ∇̂ei(K(ejj, ekk))−K(∇̂eiejj, ekk)−K(ejj, ∇̂eiekk)

= ∇̂ei(K(ejj, ekk))

=
∑
α∈I

Kα
(j,j)(k,k)∇̂eieα.

Then, since ∇̂eielm is not equal to zero if i = l or i = m, the statement (3.28) is satisfied.
When j < k, K(ejj, ekk) may have only the ejk, ejj, and ekk components from the equation
(3.20) and (3.28).

However, from (3.6), we compute

0 = (∇̂ejjK)(ek, ejj) = (∇̂ekK)(ejj, ejj)

= ∇̂ek(K(ejj, ejj))− 2K(∇̂ekejj, ejj)

= ∇̂ek(K(ejj, ejj))

=
∑
α∈I

Kα
(j,j)(j,j)∇̂ekeα.

By considering the ek component, we obtain K
(k,k)
(j,j)(j,j) = 0. In a similar manner, we can

check that K
(j,j)
(k,k)(k,k) = 0, and it follows that the ejj and ekk components of K(ejj, ekk) are

equal to zero.
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Moreover, from (3.6), we compute

0 = (∇̂ejjK)(ejk, ekk) = (∇̂ejkK)(ejj, ekk)

= ∇̂ejk(K(ejj, ekk))−K(∇̂ejkejj, ekk)−K(ejj, ∇̂ejkekk)

= ∇̂ejk(K(ejj, ekk)) +
1√
2
K(ejk, ekk)−

1√
2
K(ejj, ejk),

and we can see that

∇̂ejk(K(ejj, ekk)) = − 1√
2
K(ejk, ekk) +

1√
2
K(ejj, ejk).(3.29)

Then, the ekk component of the left-hand side is − 1√
2
K

(j,k)
(j,j)(k,k), and the ekk component of

the right-hand side is − 1√
2
K

(j,k)
(k,k)(k,k) +

1√
2
K

(j,k)
(j,j)(k,k). However, we can check that K

(j,k)
(k,k)(k,k) is

equal to zero. In fact, from (3.6), we compute

0 = (∇̂ekkK)(ej, ekk) = (∇̂ejK)(ekk, ekk)

= ∇̂ejK(ekk, ekk)−K(∇̂ejekk, ekk)−K(ekk, ∇̂ejekk)

= ∇̂ejK(ekk, ekk)

=
∑
α∈I

Kα
(k,k)(k,k)∇̂ejeα.

By considering the ek component, we obtain K
(j,k)
(k,k)(k,k) = 0. Then, the ekk component of the

right-hand side of (3.29) is 1√
2
K

(j,k)
(j,j)(k,k), and we can see that K

(j,k)
(j,j)(k,k) is equal to zero.

Thus, we obtain

K(ejj, ekk) = 0 (j < k).(3.30)

Interchanging j and k, we obtain

K(ejj, ekk) = 0 (j ̸= k).(3.31)

Next, we will show thatK(ejj, ekl) = 0 if j, k and l are different. From (3.6) and the equation
(3.31), we can see that

0 = (∇̂ekkK)(ejj, ekl) = (∇̂eklK)(ejj, ekk)

= ∇̂ekl(K(ejj, ekk))−K(∇̂eklejj, ekk)−K(ejj, ∇̂eklekk)

= −K(ejj, ∇̂eklekk)

=
1√
2
K(ejj, ekl).

Thus, it follows that

K(ejj, ekl) = 0 (j, k and l are different).(3.32)
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Furthermore, if i, j, k and l are different, then from (3.6) and the equation (3.32), we compute

0 = (∇̂ejjK)(eij, ekl) = (∇̂eijK)(ejj, ekl)

= ∇̂eij(K(ejj, ekl))−K(∇̂eijejj, ekl)−K(ejj, ∇̂eijekl)

= −K(∇̂eijejj, ekl)

= − 1√
2
K(eij, ekl),

and then, it follows that

K(eij, ekl) = 0 (i, j, k and l are different, i < j and k < l).(3.33)

Thus, from (3.31), (3.32) and (3.33), it follows that

K(eij, ekl) = 0 ({i, j} ∩ {k, l} = ∅).(3.34)

That is, it follows that

K
(i,j)
(k,l)(m,s) = 0 if {i, j} ∩ {k, l}, {k, l} ∩ {m, s} or {m, s} ∩ {i, j} is an empty set.(3.35)

Next, we will show that the coefficients K
(i,j)
(k,l)(m,s) are equal to zero except for K

(i,k)
(i,j)(j,k) where

i ≤ j ≤ k. For i < j, from (3.6), we compute

0 = (∇̂eiiK)(eij, eii) = (∇̂eijK)(eii, eii)

= ∇̂eij(K(eii, eii))− 2K(∇̂eijeii, eii)

= ∇̂eij(K(eii, eii)) +
√
2K(eii, eij),

and since the eii component of the first term is 1√
2
K

(i,j)
(i,i)(i,i) and the eii component of the

second term is
√
2K

(i,j)
(i,i)(i,i), it follows that

K
(i,j)
(i,i)(i,i) = 0 (i < j).(3.36)

In a similar manner, we can check that

K
(i,j)
(j,j)(j,j) = 0 (i < j).(3.37)

For i < j < k, from (3.6) and the equation (3.34), we compute

0 = (∇̂eiiK)(eij, eik) = (∇̂eijK)(eii, eik)

= ∇̂eij(K(eii, eik))−K(∇̂eijeii, eik)−K(eii, ∇̂eijeik)

= ∇̂eij(K(eii, eik)) +
1√
2
K(eij, eik) +

1

2
K(eii, ejk)

= ∇̂eij(K(eii, eik)) +
1√
2
K(eij, eik),

and since the eii component of the first term is 1√
2
K

(i,k)
(i,i)(i,j) and the eii component of the

second term is 1√
2
K

(i,k)
(i,i)(i,j), it follows that

K
(i,k)
(i,i)(i,j) = 0 (i < j < k).(3.38)



18 SHIMPEI KOBAYASHI AND YU OHNO

In a similar manner, we can check that

K
(j,k)
(j,j)(i,j) = K

(j,k)
(k,k)(i,k) = 0 (i < j < k).(3.39)

In addition, since the eij component of the first term is equal to zero from (3.36), and the

eij component of the second term is 1√
2
K

(i,k)
(i,j)(i,j), we can see that

K
(i,k)
(i,j)(i,j) = 0 (i < j < k).(3.40)

In a similar manner, we can check that

K
(i,j)
(i,k)(i,k) = K

(j,k)
(i,j)(i,j) = K

(i,j)
(j,k)(j,k) = K

(j,k)
(i,k)(i,k) = K

(i,k)
(j,k)(j,k) = 0 (i < j < k).(3.41)

Moreover, from (3.6) and the equation (3.34), we compute

0 = (∇̂eiiK)(eij, eij) = (∇̂eijK)(eii, eij)

= ∇̂eij(K(eii, eij))−K(∇̂eijeii, eij)−K(eii, ∇̂eijeij)

= ∇̂eij(K(eii, eij))−
1√
2
K(eij, eij)−

1√
2
K(eii, eii) +

1√
2
K(eii, ejj)

= ∇̂eij(K(eii, eij))−
1√
2
K(eij, eij)−

1√
2
K(eii, eii),

and since the eij components of the first and third terms are equal to zero from the equation

(3.36) and the eij components of the second term is − 1√
2
K

(i,j)
(i,j)(i,j), and thus we can see that

K
(i,j)
(i,j)(i,j) = 0 (i < j).(3.42)

Finally, for i < j < k < l, consider the equation

(∇̂eijK)(eik, eil) = (∇̂eikK)(eij, eil).

From the equation (3.34), we compute the left-hand side

(LHS) = ∇̂eij(K(eik, eil))−K(∇̂eijeik, eil)−K(eik, ∇̂eijeil)

= ∇̂eij(K(eik, eil)) +
1

2
K(ejk, eil) +

1

2
K(eik, ejl)

= ∇̂eij(K(eik, eil)),

and the right-hand side

(RHS) = ∇̂eik(K(eij, eil))−K(∇̂eikeij, eil)−K(eij, ∇̂eikeil)

= ∇̂eik(K(eij, eil)) +
1

2
K(ejk, eil) +

1

2
K(eij, ekl)

= ∇̂eik(K(eij, eil)).

Since the ejj component of the right-hand side is equal to zero and the ejj component of the

left-hand side is − 1√
2
K

(i,l)
(i,j)(i,k), we can see that

K
(i,l)
(i,j)(i,k) = 0 (i < j < k < l).(3.43)

In a similar manner, we can check that

K
(j,l)
(i,j)(j,k) = K

(k,l)
(i,k)(j,k) = K

(k,l)
(i,l)(j,l) = 0 (i < j < k < l).(3.44)
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From the above arguments, we can see that the coefficients K
(i,j)
(k,l)(m,s) are equal to zero except

for K
(i,i)
(i,i)(i,i), K

(i,i)
(i,j)(i,j), K

(j,j)
(i,j)(i,j) and K

(i,k)
(i,j)(j,k) where i < j < k.

Step 4 (Ki
j(k,l)): We consider the coefficients Ki

j(k,l). As in Step 3, some coefficients are

equal to zero and other are not. First, we will show that K(ei, ekl) = 0 if i ̸= k and i ̸= l.
From (3.6) and the equation (3.34), we compute

0 = (∇̂eiiK)(ei, ekl) = (∇̂eiK)(eii, ekl)

= ∇̂ei(K(eii, ekl))−K(∇̂eieii, ekl)−K(eii, ∇̂eiekl)

= −K(∇̂eieii, ekl)

=
1√
2
K(ei, ekl).

Then, we can see that

K(ei, ekl) = 0 (i ̸= k and i ̸= l).(3.45)

That is, there are four possible non-zero combinations of Ki
i(i,i), K

i
i(i,j), K

j
j(i,j) and Ki

j(i,j)

where i < j. Note that Kj
i(i,i), K

k
i(i,j) and Kk

j(i,j) are equal to zero from the symmetry of K.

At the end of this step, we will show that Ki
i(i,j) = Kj

j(i,j) = 0. From (3.6) and the equation

(3.45), we compute

0 = (∇̂eiiK)(ei, eij) = (∇̂eiK)(eii, eij)

= ∇̂ei(K(eii, eij))−K(∇̂eieii, eij)−K(eii, ∇̂eieij)

= ∇̂ei(K(eii, eij)) +
1√
2
K(ei, eij) +

1

2
K(ej, eii)

= ∇̂ei(K(eii, eij)) +
1√
2
K(ei, eij),

and since the ei component of the first term is equal to zero from the equation (3.36) and
the ei component of the second term is 1√

2
Ki

i(i,j), we can see that

Ki
i(i,j) = 0.(3.46)

In a similar manner, we can check that

Kj
j(i,j) = 0.(3.47)

From the above arguments, we can see that the coefficients Ki
j(k,l) are equal to zero except

for Ki
i(i,i) and Ki

j(i,j)

Final Step: Finally, we obtain an equality between the coefficients that are not equal to
zero. From the results of Step 1 to Step 4, there are only six possible non-zero combinations

of K
(i,i)
(i,i)(i,i), K

(i,i)
(i,j)(i,j), K

(j,j)
(i,j)(i,j), K

(i,k)
(i,j)(j,k), K

i
i(i,i) and Ki

j(i,j), where i < j < k. First, we will

show that Ki
i(i,i) = Kj

j(j,j) for any indices i and j. From (3.6), we compute

0 = (∇̂eiiK)(ei, eii) = (∇̂eiK)(eii, eii) = ∇̂ei(K(eii, eii))− 2K(∇̂eieii, eii)

= ∇̂ei(K(eii, eii)) +
√
2K(ei, eii),
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and then considering the ei components, we can see that

K
(i,i)
(i,i)(i,i) = 2Ki

i(i,i).(3.48)

Next, from (3.6), we compute

0 = (∇̂eiiK)(ei, ej) = (∇̂ejK)(ei, eii) = ∇̂ej(K(ei, eii))−K(∇̂ejei, eii)

= ∇̂ej(K(ei, eii))−
1

2
K(eij, eii),

and then considering the eij components, we can see that

Ki
i(i,i) = K

(i,i)
(i,j)(i,j).(3.49)

In a similar manner, we can also show that

Kj
j(j,j) = K

(j,j)
(i,j)(i,j).(3.50)

Moreover, from (3.6) and the equation (3.45), we compute

0 = (∇̂eiiK)(ej, ei) = (∇̂eiK)(ej, eii) = ∇̂ei(K(ej, eii))−K(∇̂eiej, eii)−K(ej, ∇̂eieii)

= −1

2
K(eij, eii) +

1√
2
K(ei, ej),

and considering the eij components, we can see that

1

2
K

(i,i)
(i,j)(i,j) =

1√
2
Ki

j(i,j).(3.51)

In a similar manner, we can also see that

1

2
K

(j,j)
(i,j)(i,j) =

1√
2
Ki

j(i,j)(3.52)

From the equations (3.49), (3.50), (3.51) and (3.52), it follows that

Ki
i(i,i) = Kj

j(j,j).(3.53)

That is, there exists some constant p such that

Ki
i(i,i) = p(3.54)

for any index i. In addition, from the equations (3.48), (3.49) and (3.51), we see that

K
(i,i)
(i,i)(i,i) = 2p, K

(i,i)
(i,j)(i,j) = K

(j,j)
(i,j)(i,j) = p and Ki

j(i,j) =

√
2

2
p.

Finally, from (3.6) and the equation (3.34), we compute

0 = (∇̂eiiK)(eij, eik) = (∇̂eijK)(eii, eik) = ∇̂eij(K(eii, eik))−K(∇̂eijeii, eik)−K(eii, ∇̂eijeik)

= ∇̂eij(K(eii, eik)) +
1√
2
K(eij, eik) +

1

2
K(eii, ejk)

= ∇̂eij(K(eii, eik)) +
1√
2
K(eij, eik),

and then considering the ejk component, we can see that
√
2K

(i,i)
(i,k)(i,k) = 2K

(i,k)
(i,j)(j,k),
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and eventually it follows that

K
(i,k)
(i,j)(j,k) =

√
2

2
p.(3.55)

Summarizing the above arguments, for i < j < k we have

Ki
i(i,i) = p, K

(i,i)
(i,i)(i,i) = 2p, K

(i,i)
(i,j)(i,j) = K

(j,j)
(i,j)(i,j) = p,

Ki
j(i,j) =

√
2

2
p, K

(i,k)
(i,j)(j,k) =

√
2

2
p,

and the coefficients are equal to zero for other index patterns. Set the parameter p to be

p = −
√
2
2
. Then, from the Lemma 1.1, it follows that

C(ei, ei, eii) = −2g(K(ei, ei), eii) = −2Ki
i(i,i) =

√
2,

C(eii, eii, eii) = −2g(K(eii, eii), eii) = −2K
(i,i)
(i,i)(i,i) = 2

√
2,

C(eii, eij, eij) = −2g(K(eii, eij), eij) = −2K
(i,j)
(i,i)(i,j) =

√
2,

C(ejj, eij, eij) = −2g(K(ejj, eij), eij) = −2K
(i,j)
(j,j)(i,j) =

√
2,

C(ei, ej, eij) = −2g(K(ei, ej), eij) = −2Ki
j(i,j) = 1,

C(eij, ejk, eik) = −2g(K(eij, ejk), eik) = −2K
(i,k)
(i,j)(j,k) = 1.

These equations coincide with the results of Amari-Chentsov cubic form in (2.15). This
completes the proof. □
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