
ON POWERS OF COVER IDEALS OF GRAPHS

DANCHENG LU AND ZEXIN WANG

Abstract. For a simple graph G, assume that J(G) is the vertex cover ideal of
G and J(G)(s) is the s-th symbolic power of J(G). We prove that reg(J(C)(s)) =
reg(J(C)s) for all s ≥ 1 and for all odd cycle C. For a simplicial complex ∆, we
show that if I∨

∆ is weakly polymatroidal (not necessarily generated in one degree)
then ∆ is vertex decomposable. Some evidences are provided that the converse
conclusion of the above result also holds true if ∆ is pure. Let W = Gπ be a
fully clique-whiskering graph. We prove that J(W )s is weakly polymatroidal for
all s ≥ 1.

1. Introduction

Let R = K[x1, . . . , xn] be the polynomial ring over a field K and let G be a simple
graph on vertex set [n] := {1, 2, . . . , n} with edge set E(G). There are two square-
free monomial ideals of R associated to G: the edge ideal I(G) which is generated
by all monomial xixj with {i, j} ∈ E(G) and the vertex cover ideal J(G) generated
by monomials ∏

i∈F xi, where F is taken over all minimal vertex covers of G. Recall
that a subset F of V (G) is a vertex cover of G if F ∩ e 6= ∅ for every edge e of G
and a vertex cover F of G is minimal if F \ {i} is not a vertex cover for each i ∈ F .
The vertex cover ideal J(G) is the Alexander dual of the edge ideal I(G), i.e.,

J(G) = I(G)∨ =
⋂

{i,j}∈E(G)
(xi, xj).

Let I be a graded ideal of R. The s-th symbolic power of I is defined by

I(s) =
⋂

p∈Min(I)
IsRp ∩R,

where Min(I) is as usual the set of all minimal prime ideals of I. It follows from
[12, Proposition 1.4.4] that for every integer s ≥ 1,

J(G)(s) =
⋂

{i,j}∈E(G)
(xi, xj)s.

The Castelnuovo-Mumford regularity (or simply regularity) is a fundamental in-
variant in commutative algebra and algebraic geometry. For a finitely generated
graded module M over the polynomial ring R, the regularity of M , denoted by
reg(M), is the least integer r ≥ 0 such that for all i ≥ 0, the i-th syzygy of M is
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generated by homogeneous elements of degree at most r+i. An equivalent definition
of the regularity via local cohomology is as follows:

reg(M) = max{i+ j : H i
m(M)j 6= 0, i ≥ 0, j ∈ Z}.

Here m denotes the maximal ideal (x1, . . . , xn).
For edge ideals of graphs, there have been a lot of research on connections between

the regularity functions reg(I(G)s) as well as reg(I(G)(s)) and the combinatorial
properties of G, see [1] and the references therein. Recently the conjecture that
reg(I(G)(s)) = reg(I(G)s) for all s ≥ 1 and for all graphs G attracted much attention
and much progress has been made in this direction. For the details, see [9] and the
references therein.

Meanwhile, the study of algebraic properties of (symbolic and ordinary) powers of
vertex cover ideals of graphs is also an active research topic. However, the regularity
of powers of such ideals is harder to compute or deal with. In fact, although S.A.
Seyed Fakhari presented in [23] the following remarkable bounds for a large class of
graphs G, including bipartite graphs, unmixed graphs, claw-free graphs:

sDeg(J(G)) ≤ reg(J(G)(s)) ≤ (s− 1)Deg(J(G)) + |V (G)| − 1,

there are not many graphs G for which either reg(J(G)(s)) or reg(J(G)s) is known
precisely. Here, Deg(J(G)) is the maximum size of minimal vertex covers of G.
When G is either a crown graph or a complete multipartite graph, reg(J(G)(s)) was
explicitly given in [11]. On the other side, if a graded ideal is componentwise linear
then its regularity is equal to the maximum degree of its minimal generators. In the
literatures [4, 7, 16, 23, 21] and [24], some classes of graphs for which either J(G)s
or J(G)(s) is componentwise linear are identified. For examples, it was proved in
[24] that G is a Cohen-Macaulay very well-covered graph if and only if J(G)(s) has
a linear resolution for some (equivalently, for all ) integer s ≥ 2. In [4, 7, 21, 23] and
[24], among others, they investigate the question of how to combinatorially modify
a graph to obtain componentwise linearity of the corresponding monomial ideals,
and identify many graphs G such that J(G)(s) is componentwise linear. In [16], it
was proved that if G is a Cohen-Macaulay cactus graph then J(G)s has a linear
resolution for all s ≥ 1. For such graphs G, the regularity of either J(G)s or J(G)(s)

is known. More recently, a new upper bound for reg(J(G)(s)) was given in [19] when
G is a non-bipartite graph.

In this paper we investigate further the properties of (symbolic and ordinary)
powers of vertex cover ideals of simple graphs. Our first main result is motivated
by Theorem 5.15 in [4], in which a family of graphs G was constructed such that
reg(J(G)(s)) is not eventually linear in s. This result particularly shows that the
equality reg(J(G)(s)) = reg(J(G)s) is not true in general. On the other side, we have
known the equality reg(I(G)(s) = reg(I(G)s) for all s ≥ 1 holds for many classes of
graphs such as unicyclic graphs and chordal graphs and so on. These facts lead us
to ask the following question:

For which graphs G has one reg(J(G)(s)) = reg(J(G)s) for all s ≥ 1?
In this vein we prove the following result.
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Theorem 2.4 If C is an odd cycle, then reg(J(C)(s)) = reg(J(C)s) for all s ≥ 1.
We remark this is the first non-trivial example where the above formula holds,

due to the well-known fact that G is a bipartite graph if and only if J(G)(s) = J(G)s
for some s ≥ 2 (equivalently for all s ≥ 1), see [25, Proposition 1.3] or [13, Theorem
5.1].

We next investigate relations between weak polymatroidality of a monomial ideal
and vertex decomposability of a simplicial complex. It turns out it helps to under-
stand the behaviors of the powers of cover ideals. Vertex decomposability was first
introduced by [20] in the pure case, and extended to the non-pure case in [2]. It is
defined in terms of the deletion and link. Let ∆ be a simplicial complex on vertex
set V . For x ∈ V , the link of x in ∆ is the subcomplex

lk∆(x) = {F ∈ ∆: F ∪ {x} ∈ ∆ and x /∈ F}
and the deletion of x in ∆ is the subcomplex

del∆(x) = {F ∈ ∆: x /∈ F}.

Definition 1.1. A simplicial complex ∆ is said to be vertex decomposable if either
∆ is a simplex, or there exists a vertex x of ∆ such that

(1) lk∆(x) and del∆(x) are vertex decomposable;
(2) Each facet of lk∆(x) is not a facet of del∆(x).
A vertex satisfying condition (2) is called a shedding vertex of ∆.

For the recent developments on vertex decomposability, one may refer to [8] and
the references therein. The following strict implications is well-known for a simplicial
complex ∆:

vertex decomposable =⇒ shellable =⇒ sequentially Cohen-Macaulay
Moreover, ∆ is shellable if and only if I∨∆ has linear quotients; and ∆ is sequentially
Cohen-Macaulay if and only if I∨∆ is componentwise linear. One may ask what
property I∨∆ has when ∆ is vertex decomposable, or vice versa.

Definition 1.2. Following [10], we say that a monomial ideal I in R is weakly
polymatroidal if for every pair of elements u = xa1

1 · · ·xan
n and v = xb1

1 · · ·xbn
n of G(I)

with a1 = b1, . . . , aq−1 = bq−1 and aq < bq, (noting that q < n) there exists p > q
such that w := (xqu)/xp belongs to G(I). Here, G(I) denotes the set of minimal
monomial generators of I.

Different from the original definition in [10], we here do not require I to be gen-
erated in one degree. Using the same method as in [10], one can prove if I is weakly
polymatroidal in this generalized sense, then I has linear quotients. Our second
main result is as follows:
Theorem 3.1. If I∨∆ is weakly polymatroidal then ∆ is vertex decomposable.

This particularly shows that being weakly polymatroidal is a condition stronger
than the property of having linear quotients for a monomial ideal. We also prove
that the converse of Theorem 3.1 holds in some special cases. Recall that a graph
G is unmixed if every minimal vertex cover of G has the same cardinality, i.e. J(G)
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is generated in one degree, and that G is vertex decomposable if the independence
complex of G is vertex decomposable.
Corollary 3.2. Let G be either a cactus graph or a bipartite graphs or a chordal
graph. Assume further that G is unmixed. Then the following are equivalent:

(1) R/I(G) is Cohen-Macaulay;
(2) G is vertex decomposable;
(3) J(G) is weakly polymatroidal (in some ordering of variables);
(4) J(G)s is weakly polymatroidal (in some ordering of variables) for all s ≥ 1.

Here, a cactus graph is a simple graph in which every edge belongs to at most one
cycle. This leads us to conjecture the following.
Conjecture 2. If G is an unmixed graph, then G is vertex decomposable if and only
if J(G) is weakly polymatroidal.

The condition that G is unmixed cannot be dropped in the above conjecture. We
show that the above conjecture holds true if either G has girth ≥ 5 or G is very
well-covered, see Propositions 3.6 and 3.7.

It is natural to ask for which unmixed graphs G, J(G)s are weakly polymatroidal
besides the graphs given in Corollary 3.2. Of course, such graphs (i.e., R/I(G))
should be Cohen-Macaulay by Alexander duality. Let G be a simple graph on
vertex set V (G) with edge set E(G). Following [3], a clique vertex-partition of G is
a partition V (G) = W1t· · ·tWt such that the induced graph of G on Wi is a clique
(a complete graph) for i = 1, . . . , t. Denote this partition by π = {W1, . . . ,Wt}.
The fully clique-whiskering graph Gπ of G by π is the graph on vertex set V (G) ∪
{y1, . . . , yt} and with edge set E(G) ∪ {vyi : v ∈ Wi, 1 ≤ i ≤ t}. When π is a
trivial partition, i.e., |W1| = · · · = |Wt| = 1, Gπ is also called the whisker graph of
G. A tree is Cohen-Macaulay if and only if it is the whisker graph of some other
tree. A Cameron-Walker graph is Cohen-Macaulay if and only if it is a fully clique-
whiskering graph Gπ of a bipartite gaph G by some clique vertex-partition π of G,
see [14, Theorem 1.3]. Our third main result is as follows:
Theorem 4.3. If W = Gπ for some graph G and some clique vertex-partition π,
then J(W )s is weakly polymatroidal for all s ≥ 1.

This result is a complement of Corollary 3.2. As a consequence, we obtain if
W = Gπ then reg(J(W )s) = reg(J(W )(s)) = s|V (G)| for all s ≥ 1. The following is
another consequence of Theorem 4.3.
Corollary 4.5. If W is the whisker graph of some graph, then both J(W )s and
J(W )(s) are weakly polymatroidal for all s ≥ 1.

In the rest part of this paper we will keep the notions introduced in this section
unless otherwise stated, and refer to [12] for some unexplained notions.

2. Powers of cover ideals of odd cycles

In this section we will prove that if C is an odd cycle then both J(C)s and J(C)(s)

have the same regularity for all s ≥ 1.
We begin with fixing some notions. Let M be a finitely generated graded R-

module generated by homogeneous elements f1, . . . , fr minimally with deg(f1) ≤
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deg(f2) ≤ · · · ≤ deg(fr). We denote by Deg(M) the number deg(fr) and by deg(M)
the number deg(f1). It is known that reg(M) ≥ Deg(M). Let m denote the maximal
graded ideal (x1, x2, . . . , xn) of R.

Proposition 2.1. Let I be a homogeneous ideal in R and t a positive integer. Put
J = I ∩mt. Then the following holds.

(1) reg(R
I

) ≤ reg(R
J

);
(2) If t ≤ Deg(I), then reg(R

I
) = reg(R

J
).

Proof. (1) Set bi = max{j : H i
m(R

I
)j 6= 0} and ai = max{j : H i

m(R
J

)j 6= 0}. Then
reg(R

I
) = max{bi + i : i ≥ 0} and reg(R

J
) = max{ai + i : i ≥ 0}. Applying the local

cohomological functors with respect to m to the short exact sequence

(†) 0→ R

J
→ R

I
⊕ R

mt
→ R

mt + I
→ 0,

we obtain the long exact sequence: 0→ H0
m(R/J)→ H0

m(R
I

)⊕H0
m( R

mt )→ H0
m( R

mt+I )→
· · · → H i

m(R/J) → H i
m(R

I
) ⊕ H i

m( R
mt ) → H i

m( R
mt+I ) → · · · . From this sequence as

well as the equality H i
m( R

mt+I ) = H i
m( R

mt ) = 0 for all i > 0, we obtain the following
facts.

(i) ai = bi for all i ≥ 2.
(ii) The sequence H1

m(R
J

)→ H1
m(R

I
)→ 0 is exact. From this, we have H1

m(R
I

)i = 0
if H1

m(R
J

)i = 0. This implies that a1 ≥ b1.
(iii) The sequence 0 → H0

m(R
J

) → H0
m(R

I
) ⊕ R

mt → R
I+mt is exact. Thus, for any

i ∈ Z with H0
m(R

J
)i = 0, we have dimkH

0
m(R

I
)i + dimk[ Rmt ]i ≤ dimk[ R

I+mt ]i ≤ dimk[ Rmt ]i
and so dimkH

0
m(R

I
)i = 0. Hence a0 ≥ b0.

Combining (i),(ii) with (iii), we obtain that reg(R
J

) ≥ reg(R
I

).
(2) By using the short exact sequence (†), we also obtain

reg(R
J

) ≤ max{reg(R
I

), t− 1} = reg(R
I

).

This finishes the proof. �

Proposition 2.1 can be extended to the case of graded modules. Let M = ⊕
i∈ZMi

be a finitely generated Z-graded R-module. For j ∈ Z, we denote by M≥j the graded
submodule ⊕

i≥jMi of M . Note that I ∩ mt = I≥t for any graded ideal I, we may
look upon the following result as a generalization of Proposition 2.1.

Proposition 2.2. Let M be a finitely generated Z-graded R-module and let j ∈ Z
such that M≥j 6= 0. Then the following statements hold:

(1) reg(M≥j) ≥ reg(M);
(2) If j ≤ Deg(M), then reg(M≥j) = reg(M).

Proof. (1) Consider the following short exact sequence:

(‡) 0→M≥j →M →M/M≥j → 0.
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It is known that reg(N) = max{i : Ni 6= 0} whenever N is a graded R-module
of finite length. From this, it follows that reg(M≥j) ≥ j > reg(M/M≥j). Hence
reg(M) ≤ max{reg(M≥j), reg(M/M≥j)} = reg(M≥j).

(2) Using the sequence (‡) again, we obtain
reg(M≥j) ≤ max{reg(M), reg(M/M≥j) + 1}.

Note that reg(M) ≥ Deg(M) ≥ j ≥ reg(M/M≥j) + 1, the result follows. �

Let G be a simple graph on vertex set [n] and H a subgraph of G. The neighbor-
hood of H is defined by

NG(H) = {i ∈ V (G) : i is adjacent to some vertex of H}.
By [13, Proposition 5.3], if NG(C) = [n] for every odd cycle C, then the symbolic
Rees algebra

Rs(J(G)) =
⊕
k≥0

J(G)(k)tk

of J(G) is generated by the monomial x1 · · ·xnt2 together with the monomials
t

∏
i∈F xi such that F is a minimal vertex cover of G. Thus, the following result

is a direct consequence of [13, Proposition 5.3].
Proposition 2.3. Let G be a simple graph on vertex set [n] such that NG(C) = [n]
for every odd cycle of G. Then

J(G)(s) = J(G)s +
b s

2 c∑
i=1

(x1x2 · · ·xn)iJ(G)s−2i.

Here, b s2c denotes the largest integer at most s
2 .

Let C be an odd cycle of length n = 2r+ 1. It is not difficult to see that C is not
unmixed if n ≥ 9. More precisely, we have deg(J(C)) = r + 1 and

Deg(J(C)) =


4t+ 2, n = 6t+ 3;
4t+ 3, n = 6t+ 5;
4t+ 4, n = 6t+ 7.

for all t ≥ 0.
We now come to the main result of this section.

Theorem 2.4. Let J be the vertex cover ideal of an odd cycle of C on vertex set [n]
with n = 2r + 1. Then reg(J (s)) = reg(Js) for all s ≥ 1.
Proof. Put t = Deg(J). Then t ≥ r + 1 and so Deg(J (s)) = Deg(Js) = st for all
s ≥ 1 by Proposition 2.3. Fix s ≥ 1. We claim that

J (s) ∩mst = Js ∩mst.

In light of Proposition 2.3, it suffices to show that
(x1x2 · · ·x2r+1)iJs−2i ∩mst ⊆ Js

for all i = 1, . . . , b s2c. Fix i ≥ 1 and let α be a monomial in (x1x2 · · ·x2r+1)iJs−2i∩mst.
Then we may write α = (x1x2 · · ·x2r+1)iα1 · · ·αs−2iu, where αi is a minimal monomi-
al generator of J for each i and u is some monomial. Since deg(α) ≥ st and deg(αi) ≤
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t, it follows that deg(u) ≥ i. This, together with the fact (x1x2 · · ·x2r+1)xi ∈ J2 for
any i ∈ [2r + 1], implies α ∈ Js. Thus, the claim is proved.

In view of Proposition 2.1, the result is immediate from the above claim. �

Remark 2.5. Proposition 2.1 is also useful in the study of powers of edge ideals.
For example, [9, Theorem 3.5] is a direct consequence of [9, Corollary 3.3] in view
of Proposition 2.1.

3. Vertex decomposability via weak polymatroidality

Let ∆ be a simplicial complex on [n]. In this section we prove that if I∨∆ is weakly
polymatroidal then ∆ is vertex decomposable. This particularly shows that for a
monomial ideal, the property of being weakly polymatroidal is stronger than the
property of having linear quotients. The converse implication of the above result is
also discussed.

We first give an observation on the property of a shedding vertex. Let ∆ be
a simplicial complex on vertex set [n] with facets F1, F2, . . . , Fr. Assume that k
is a shedding vertex of ∆ and assume without loss of generality that k ∈ Fi for
i = 1, . . . , j and k /∈ Fi for i = j+1, . . . , r. Then lk∆(k) = 〈F1\{k}, . . . , Fj\{k}〉 and
del∆(k) = 〈F1 \ {k}, . . . , Fj \ {k}, Fj+1, . . . , Fr〉 = 〈Fj+1, . . . , Fr〉. This observation
is useful in the following proofs. We also need some more notation. Let I be a
monomial ideal. As usual, G(I) denotes the set of minimal monomial generators of
I and supp(I) is the set ∪u∈G(I)supp(u), where for a monomial u, supp(u) denotes
the set {i ∈ [n] : xi|u}. For a subset A ⊆ [n], xA denotes the monomial ∏

i∈[n]\A xi.

Theorem 3.1. Let ∆ be a simplicial complex on [n] and suppose that I∨∆ is weakly
polymatroidal in some ordering of variables. Then ∆ is vertex decomposable.

Proof. Since the vertex decomposability of a simplicial complex is independent of
the ordering of varaibles, we may assume I∨∆ is weakly polymatroidal itself. Let
F(∆) denote the set of facets of ∆. In the following, we will use the induction on
|F(∆)|, the number of facets of ∆. If |F(∆)| = 1, then I∨∆ is generated by a single
monomial and so it is weakly polymatroidal automatically. Now assume |F(∆)| ≥ 2.
In this case we let k = min{i : i ∈ F1 ∪ · · · ∪ Fr, i /∈ F1 ∩ · · · ∩ Fr}.

We first show that k is a shedding vertex of ∆. For this, let F,G be facets of ∆ such
that k ∈ F and k /∈ G, respectively. Note that we may write xF = x

ak+1
k+1 · · ·xan

n and
xG = xkx

bk+1
k+1 · · ·xbn

n , where ai, bi ∈ {0, 1} for all i and they are minimal generators
of I∨∆. This implies there exists ` > k such that u := xkxF/x` is also a minimal
generators of I∨∆ and so there exists a facet H of ∆ such that u = xH . From this it
follows that k /∈ H and F \{k} ⊆ H. Since H is a facet of ∆, we have F \{k} ( H.
This actually shows that none of facets of lk∆(k) is a facet of del∆(k) and it follows
that k is a shedding vertex of ∆.

Set ∆1 := lk∆(k) and ∆2 := del∆(k). Next we show I∨∆1 and I∨∆2 are both
weakly polymatroidal. We will look ∆1 and ∆2 upon as simplicial complexes on
V := [n] \ {k}. Then I∨∆i

= (xV \F : F ∈ F(∆i)). Note that

(♣) G(I∨∆) = G(I∨∆1)
⊔
{xku : u ∈ G(I∨∆2)}.
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Moreover, supp(I∨∆i
) ⊆ {k + 1, . . . , n} for i = 1, 2.

Let u = x
ak+1
k+1 · · ·xan

n and v = x
bk+1
k+1 · · ·xbn

n be distinct elements in G(I∨∆1) such
that ak+1 = bk+1, . . . , ak+i−1 = bk+i−1 and ak+i < bk+i. Then, since I∨∆ is weakly
polymatroidal, there exists j > i ≥ 1 such that w := xk+iu/xk+j ∈ G(I∨∆). This,
together with the decomposition in (♣), implies w ∈ G(I∨∆1). Thus, we have proven
that I∨∆1 is weakly polymatroidal. Similarly, we can prove I∨∆2 is weakly polyma-
troidal. By induction hypothesis, we have ∆i is vertex decomposable for i = 1, 2
and so ∆ is vertex decomposable, as required. �

Let G be a simple graph. A subset A of V (G) is an independent set of G if for
any i, j ∈ A, the pair {i, j} is not an edge of G. The independence complex of G is
the collection of all independent sets of G. We call G to be vertex decomposable if
its independence complex is vertex decomposable. If we let ∆ be the independence
complex of G, then the Stanley-Reisner ideal I∆ is the edge ideal I(G) and its
Alexander dual I∨∆ is the vertex cover ideal J(G).

The converse of Theorem 3.1 is true in some cases as shown by the following
corollary.

Corollary 3.2. Let G be either a cactus graph or a bipartite graphs or a chordal
graph. Assume further that G is unmixed. Then the following are equivalent:

(1) R/I(G) is Cohen-Macaulay;
(2) G is vertex decomposable;
(3) J(G) is weakly polymatroidal (in some ordering of variables);
(4) J(G)s is weakly polymatroidal (in some ordering of variables) for all s ≥ 1.

In particular, if ∆ is the independence complex of either a cactus graph or a
bipartite graph or a chordal graph, then I∨∆ is weakly polymatroidal in some ordering
of variables if and only if ∆ is vertex decomposable and pure.

Proof. (1)⇒(4) Suppose that R/I(G) is Cohen-Macaulay. If G is either a cactus
graph or a chordal graph, then J(G)s is weakly polymatroidal by [16, Theorem 4.3]
and [17, Theorem 1.7] respectively. If G is bipartite, then G comes from a finite poset
P , see [12, Theorem 9.1.13]. Using the notation in [5], we may write I(G) = I2(P ).
From this it follows that (I∨∆)s = (H2(P ))s is weakly polymatroidal for all s ≥ 1 by
[5, Theorem 2.2].

(4)⇒(3) Automatically.
(3)⇒(2) It follows from Theorem 3.1.
(2)⇒(1) Every vertex decomposable graph is sequentially Cohen-Macaulay and

an unmixed sequentially Cohen-Macaulay graph is a Cohen-Macaulay graph. �

Corollary 3.3. Let C be a cycle of size 5. Then reg(J(C)(s)) = reg(J(C)s) = 3s.

Proof. It is known that if C is a cycle of size n, then R/I(C) is Cohen-Macaulay
if and only if R/I(C) is sequentially Cohen-Macaulay if and only if n ∈ {3, 5}, see
[6, Proposition 4.1]. By this fact the result follows from Theorem 2.4 together with
Corollary 3.2. �

We also have the following partial converse of Theorem 3.1.
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Proposition 3.4. Let ∆ be a pure simplicial complex on [n]. If 1 is a shedding
vertex of ∆ such that I∨∆i

is weakly polymatroidal for i = 1, 2, then I∨∆ is weakly
polymatroidal. Here, ∆1 := lk∆(1) and ∆2 := del∆(1).
Proof. Since 1 is a shedding vertex of ∆, we have

G(I∨∆) = G(I∨∆1)
⊔
{x1u : u ∈ G(I∨∆2)}.

Note that supp(u) ⊆ {2, . . . , n} for any u ∈ G(I∨∆1) ⊔
G(I∨∆2).

Let u = xa1
1 · · ·xan

n and v = xb1
1 · · ·xbn

n be monomials belonging to G(I∨∆) satisfying
a1 = b1, . . . , ai−1 = bi−1 and ai < bi. We need to find a monomial w ∈ G(I∨∆)
such that w = xiu/xj for some j > i. If either {u,v} ⊆ G(I∨∆1) or {u,v} ⊆
{x1u : u ∈ G(I∨∆2)}, the existence of w follows by the assumption that I∨∆i

is weakly
polymatroidal for i = 1, 2. So we only need to consider the case that u ∈ G(I∨∆1)
and v ∈ {x1u : u ∈ G(I∨∆2)}. Note that i = 1 in this case. Moreover, since 1 is
a shedding vertex, there exists v1 ∈ G(I∨∆2) such that u divides v1. This implies
v1 = uxj for some j > 1 by the purity of ∆. Hence w : = x1v1 = x1u/xj meets the
requirement and so we are done. �

Proposition 3.4 together with Corollary 3.2 leads us to present the following.
Conjecture 1. If ∆ is a vertex decomposable pure simplicial complex, then I∨∆ is
weakly polymatroidal.

A weak form of this conjecture is:
Conjecture 2. If G is an unmixed vertex decomposable graph, then J(G) is weakly
polymatroidal.

The condition that G is unmixed is necessary in the above conjecture as shown
by the following example.
Example 3.5. A star graph is a graph in which exactly one vertex has degree at
least 2. Let G be a star graph with more than three vertices of degree 1. Then G
is vertex decomposable, but J(G) is not weakly polymatroidal in any ordering of
variables.

The following results are other examples in support of Conjecture 2.
Proposition 3.6. Let G be a Cohen-Macaulay graph of girth at least 5. Then J(G)
is weakly polymatroidal.
Proof. By [15, Theorem 2.4], we have G is a PC graph. Recall an induced 5-cycle
of G is basic if it does not contains two adjacent vertices of degree three or more in
G, and an edge is a pendant if it contains a vertex of degree 1. Let C1, . . . , Ck be
the set of all basic 5-cycles of G and let L1, . . . , Ll be the set of all pendants of G.
Recall that G is a PC graph if V (G) can be partitioned into V (G) = V (C1) t · · · t
V (Ck) t V (L1) t · · · t V (Ll).

Label the vertices of Ci successively by xi1, xi4, xi2, xi3, xi5 such that xi3, xi4, xi5
are vertices of degree 2 for i = 1, . . . , k, and let yi1, yi2 be vertices of Li such that
yi2 has degree 1 for i = 1, . . . , l. We work with the following ordering of variables:

x11 > · · · > x15 > · · · > xk1 > · · ·xk5 > y11 > y12 > · · · > yl1 > yl2.
9



To prove J(G) is weakly polymatroidal, we let f, g be minimal monomial generators
of J(G) with f 6= g, and let z be a variable such that degz′ f = degz′ g for z′ > z
and degz g < degz f . We need to find a variable w < z such that zg/w ∈ J(G). To
this end, for each monomial h ∈ J(G), we write h as following:

h = h(C1) · · ·h(Ck)h(L1) · · ·h(Ll),
where h(Ci) and h(Lj) are monomials such that supp(h(Ci)) ⊆ V (Ci) for i =
1, . . . , k and supp(h(Lj)) ⊆ V (Lj) for j = 1, . . . , l. We consider the following cases:

Case 1 z = xi1 for some i: Then g(Ci) ∈ {xi2xi4xi5, xi3xi4xi5}. We set w = xi4 if
g(Ci) = xi2xi4xi5 and set w = xi5 if g(Ci) = xi3xi4xi5. Then zg/w ∈ J(G).

Case 2 z = xi2 for some i: Then g(Ci) ∈ {xi1xi4xi3, xi3xi4xi5}. We set w = xi4
if g(Ci) = xi1xi4xi3, and set w = xi3 and set w = xi4 if g(Ci) = xi3xi4xi5. Then
zg/w ∈ J(G).

Case 3 z = xi3 for some i: Then g(Ci) = xi1xi5xi2. We set w = xi5.
Case 4 z = xi4 for some i: This case is impossible.
Case 5 z = xi5 for some i: This case is impossible again.
Case 6 z = yi1 for some i: Then h(Li) = yi2. We set w = yi2.
Case 7 z = yi2 for some i: This case is impossible again.
Thus, in all possible cases, we find a variable w which meets the requirement.

This completes the proof. �

A graph G is called very well-covered if |V (G)| is even and every minimal vertex
cover of G contains exactly |V (G)|

2 vertices. Clearly, every very well-covered graph is
unmixed, i.e. well-covered.
Proposition 3.7. Let G be a Cohen-Macaulay very well-covered graph. Then J(G)
is weakly polymatroidal.
Proof. In view of [18, Lemma 3.1], there is a relabeling of vertices

V (G) = {x1, . . . , xn, y1, . . . , yn}
such that the following five conditions hold:

(i) X = {x1, . . . , xn} is a minimal vertex cover of G and Y = {y1, . . . , yn} is an
independent set of G;

(ii) {xi, yi} ∈ E(G) for i = 1, . . . , n;
(iii) if {zi, xj}, {yj, xk} ∈ E(G), then {zi, xk} ∈ E(G) for distinct i, j, k and for

zi ∈ {xi, yi};
(iv) if {xi, yj} ∈ E(G), then {xi, xj} /∈ E(G);
(v) if {xi, yj} ∈ E(G), then i ≤ j.
We will show that J(G) is weakly polymatroidal in the ordering: x1 > x2 > · · · >

xn > y1 > y2 > · · · > yn. Let f, g be minimal monomial generators of J(G) with
f 6= g. Then we may write f and g as follows:

f =
∏
z∈C

z = xa1
1 · · ·xan

n y
an+1
1 · · · yan+n

n

and
g =

∏
z∈D

z = xb1
1 · · ·xbn

n y
bn+1
1 · · · ybn+n

n .
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Here, C and D are minimal vertex covers of G, and ai, bi ∈ {0, 1} for all i. Note
that ai + an+i = 1 and bi + bn+i = 1 for i = 1, . . . , n, there exists 1 ≤ k ≤ n such
that ai = bi for i = 1, . . . , k − 1 and ak > bk. This actually means that xk ∈ C and
xk /∈ D. From this it follows that yk ∈ D. We claim that A := (D ∪ {xk}) \ {yk} is
also a vertex cover of G.

Let e = {z1, z2} ∈ E(G). If yk /∈ e, then it is clear that A ∩ e 6= ∅. So we
assume that e = {xj, yk}. By (v), we have j ≤ k. If j = k, then A ∩ e = {xk}. So
we may assume further that j < k. Since yk /∈ C, it follows that xj ∈ C and so
bj = aj = 1. This implies xj ∈ D and so A∩ e 6= ∅. Thus, we prove the claim and it
follows that xkg/yk = ∏

z∈A is a minimal monomial generator of J(G), completing
the proof. �

Let G be a graph and s ≥ 1 an integer. In [22], the graph Gs is constructed so
that J(Gs) is the polarization of J(G)(s).

Corollary 3.8. Let G be a Cohen-Macaulay very well-covered graph. Then J(G)(s)

is weakly polymatroidal for all s ≥ 1.

Proof. It is immediate from the definitions that if I is a monomial ideal generated
in one degree then I is weakly polymatroidal if and only if the polarization of I
is weakly polymatroidal. By [22, Proposition 3.1], if G is a Cohen-Macaulay very
well-covered graph then so is Gs. Now, the result follows from Proposition 3.7. �

4. Powers of cover ideals of clique-whiskering graphs

Let W = Gπ be the fully clique-whiskering of some graph G by some clique vertex-
partition π of G. In this section we prove J(W )s is weakly polymatroidal for all
s ≥ 1. As a consequence, we have reg(J(W )s) = reg(J(W )(s)) = s|V (G)| for all
s ≥ 1.

For convenience, we introduce the notions of a simplicial co-complex and the face
ideal of a simplicial co-complex with respect to a partition.

Definition 4.1. Let V be a finite set. We say that a collection ∇ of subsets of V
is a simplicial co-complex on V if whenever F ∈ ∇ and F ⊆ G ⊆ V one has G ∈ ∇.
Assume that V has a partition V = V1t· · ·tVt and assume that Vi = {xi1, . . . , xiki

}
for i = 1, . . . , t. For each face F ∈ ∇, we put

uF :=
∏
xij∈F

xij
∏
i∈[t]

y
ki−|F∩Vi|
i .

Then the face ideal of ∇ with respect to this partition is the following monomial
ideal J in the polynomial ring k[x11, . . . , x1k1 , . . . , xt1, . . . , xtkt , y1, . . . , yt]:

J = (uF : F ∈ ∇).

Proposition 4.2. Let ∇ be a simplicial co-complex on V and assume that V has a
partition V = V1t · · · tVt with Vi = {xi1, . . . , xiki

} for i = 1, . . . , t. Denote by J the
face ideal of ∇ with respect to this partition. Then Js is weakly polymatroidal for each
s ≥ 1 in the ordering: x11 > · · · > x1k1 > · · · > xt1 > · · · > xtkt > y1 > · · · > yt.
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Proof. Let α, β be the minimal monomial generators of Js with α 6= β. We may
write

α = uF1uF2 · · ·uFs = u1 · · ·utysk1−deg(u1)
1 · · · yskt−deg(ut)

t ,

and
β = uG1uG2 · · ·uGs = v1 · · · vtysk1−deg(v1)

1 · · · yskt−deg(vt)
t .

Here, Fi ∈ ∇, Gi ∈ ∇ for all i ∈ [s], and supp(ui) ∪ supp(vi) ⊆ Vi for i = 1, . . . , t.
Since α 6= β, there exists a variable z < y1 such that degw(α) = degw(β) for all w < z
and degz(α) < degz(β). Suppose that z = xij, where 1 ≤ i ≤ t and 1 ≤ j ≤ ki.
Then degxij

α ≤ s− 1 and so there exists l ∈ [s], such that xij /∈ Fl ∩ Vi. Say l = 1.
Put F ′1 := F1 ∪ {xij} and let

γ := uF ′
1
uF2 · · ·uFs .

Then γ = xijα/yi and γ ∈ Js. From this it follows that Js is weakly polymatroidal.
�

Theorem 4.3. Let W = Gπ, where G is a simple graph and π = (W1, . . . ,Wt) is a
clique vertex-partition of G. Then J(W )s is weakly polymatroidal for every s ≥ 1.

Proof. Let ∇ := {C ∩ V (G) : C is a minimal vertex cover of W}. Then ∇ is a sim-
plicial co-complex on V (G). Moreover, J(W ) coincides with the face ideal of ∇ with
respect to the partition π. Now, the result follows from Proposition 4.2. �

Theorem 4.3 together with Theorem 3.1 implies Gπ is vertex decomposable. This
recovers [3, Theorem 3.3]. Other consequences of Theorem 4.3 are as follows:

Corollary 4.4. Let W = Gπ be as in Theorem 3.1. Then reg(J(W )(s)) = reg(J(W )s) =
s|V (G)| for all s ≥ 1.

Proof. It follows from Theorem 4.3 that reg(J(W )s) = s|V (G)|. By [21, Corollary
4.4], we have reg(J(W )(s)) = s|V (G)|. �

Corollary 4.5. Let W be the whisker graph of some graph. Then both J(W )(s) and
J(W )s are weakly polymatroidal for all s ≥ 1.

Proof. We have that J(W )s is weakly polymatroidal by Theorem 4.3 and that
J(W )(s) is weakly polymatroidal by Corollary 3.8. �
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