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Abstract

Let g be a non-compact simple exceptional Lie algebra over R with an automorphism o
of order four and b the fixed point set of o. Suppose that the dimension of the center of b
is at most one and h¢ contains a Cartan subalgebra in gc. In this paper we shall classify
non-compact 4-symmetric pairs under the certain equivalence relation.

1 Introduction

It is known that k-symmetric spaces are generalizations of symmetric spaces. The definition is
as follows:

Let G be a Lie group and H a closed subgroup of G. A homogeneous space (G/H, o) is
called a k-symmetric space if there exists an automorphism ¢ of GG such that

e o =1d and o' # Id for any [ < k,

e G2 C H C G7, where G? and (Y is the set of fixed points of ¢ in G and its identity
component, respectively,

The classification of k-symmetric spaces is a fundamental problem for studying geometry
of k-symmetric spaces. It is well known the classification of Riemannian symmetric spaces (cf.
Helgason [3]). Gray [2] classified Riemannian 3-symmetric spaces (see also Wolf and Gray [8]).
Moreover compact Riemannian 4-symmetric spaces is classified by Jeménez [4].

The classification of 3-symmetric spaces (G/H,o) was made by classifying involutions 7
satisfying 7o = o7. Similarly, involutions 7 of a 4-symmetric space (G/H, o) satisfying 70 = o1
are important for the classification of 4-symmetric spaces. Let g (or Lie(G)) denote the Lie
algebra of G and g7 the fixed point set of o in g. In two previous papers [5] and [6], we classified
such involutions 7 when g is a compact simple Lie algebra of exceptional type and the dimension
of the center of g is at most one. In this paper we classify the non-compact 4-symmetric spaces
satisfying some certain conditions.

Let (G/H, o) be a 4-symmetric space such that G is a simple Lie group. Let g and b denote
the Lie algebra of G and H, respectively. The pair (g,b) (or (g,0)) is called a 4-symmetric pair.
Note that, since the fixed point set g7 is equal to gU_l, the 4-symmetric pair (g, o) is equal to
(g,071).

Suppose that g is of non-compact type. Let 6 be a Cartan involution of g such that o = o6
and g = £ & p the Cartan decomposition. Let g* and h* denote the compact duals of g and
b := g7, respectively, that is, g* = €@ /—1p and h* = g? Nt ® /—1(g° Np). Then o induces an
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automorphism ¢* on g*, and (g*, 0*) becomes a compact 4-symmetric pair. Let 3((g*)°") denote
the center of (g*)° . Suppose that dim(3((g*)°") < 1. Then according to [5] and [6] if there exists
an automorphism 7* of g* such that 7*((g*)?") = (g*)°", then 7*0* = ¢*7* or 7*¢* = (o)1 7*.
From the above, it is natural to define an isomorphism between the two triplets (g;, 01, 61) and
(g2,092,02), where g; is a simple Lie algebra over R, o; is an order four automorphism on g;,
and 6; is an involution that commutes with o;(i = 1,2), as the existance of an isomorphism
i g1 — g2 such that u(glﬁl) = g§t92 and p(g7') = g5°. In this paper, we classify non-compact
4-symmetric pairs (g,o) of exceptional type when dim3(g”) < 1 under this isomorphism using
the involution on compact 4-symmetric pairs investigated in [5] and [6].

At first, we shall prove that there exists a Cartan involution 6 of G satisfying 8o = 6. This
allows us to consider the compact dual g* of Lie(G) with respect to this Cartan involution 6.
These automorphisms 6 and o of Lie(G) induce automorphisms 6* and o* of g*, respectively,
which satisfy (0*)? = Id = (0*)* and 0*¢c* = ¢*0*. The non-compact dual of a symmeric
pair (g*,0*) induce non-compact 4-symmetric pairs. This construction method runs out of
non-compact 4-symmetric spaces. Therefore the existance of such a Cartan involution is most
impotant. If g* is of an exceptional type, then these 6* are classified by authors under the
certain conditions ([5], [6]).

The organization of this paper is as follows:

In Section 2, we recall the notions of root systems needed for the remaining part of this
paper and some results on inner automorphisms of order k (k < 4) of a semisimple Lie algebra.

In Section 3, let g be a non-compact simple Lie algebra over R with an automorphism of
order k. We prove that there is a maximal compact subgroup of Aut(g) containing a compact
subgroup {Id,o,c?,...,0%71} of Aut(g) (Lemma 3.2). Using the Lie algebra of this maximal
compact subgroup, we construct a Cartan decomposition and induced Cartan involution which
is commute with 0. As mentioned above, this is key Proposition (Proposition 3.4).

In Section 4, we investigate some properties of automorphisms of the compact dual of non-
compact 4-symmetric triple. These considerations shows that the compact dual constitutes a
compact 4-symmetric triple.

In Section 5, we define the isomorphism between two triples (g*, o*, 0*) and describe the rela-
tionship between the isomorphic of two compact(resp. non-compact) triples and the isomorphic
of their non-compact(resp. compact) duals. Moreover, if the dimension of the center of (g*)7"
is 0 or 1 and ¢* is an inner automorphism of g*, then we prove that the non-compact triples are
exhausted from all conjugate classes of involutions on g* under Aut(g*)g* (g*) which commutes
with o*.

In Section 6, let (G/H, o) be a exceptional non-compact 4-symmetric space and suppose that
the complexification of Lie(H) contains a Cartan subalgebra of the complexification of Lie(G)
and the dimension of the center of Lie(H) is 0 or 1. Then using [5] and [6], we classify the
exceptional non-compact 4-symmetric spaces (G/H, o) that satisfy these conditions under the
isomorphism defined in Section 5.

2 Preliminaries.

Let g* and t* be a compact semisimple Lie algebra and a maximal abelian subalgebra of g*,
respectively. Let g¢ and t7. denote the complexifications of g* and t*, respectively. Let A(gg, )
denote the root system of g¢ with respect to ¢, IT(g¢, t¢) = {a1, ..., a,} the set of fundamental
roots of A(gg, t) with respect to a lexicographic order and

(2.1) o, ={X e€g¢; [H,X]=a(H)X for any H € {}.



Since the Killing form B is non-degenerate, we can define H, € tf(a € A(gg, ) by o(H) =
B(H, H) for any H € t.. As in Helgason [3], we take the Weyl basis {E, € g, ; o € A(g, )}
of g so that

[Eom E—oc] = H,,

[Eas Eg] = NagEats, Nap €R,
Nap=—=N_qa,3,

Ay=E,—E_o, Bo=V—-1(E,+E_,) €g*.

Let AT denote the set of positive roots of A(gg, t) with respect to the order.
As is well-known, a Lie algebra

g"=b"+ > (RA,+RB,)
acAt

is a compact real form of gf.. Here h* =3 1+ Ry/—1H,. In particular let

suy(2) ;== RV—1H, + RA, + RB, = s5u(2).

Let t, denote the root reflections for a € A(g,t:) and #, an inner automorphism of g* such
that o) = ta.
We define K; € t-(j =1,...,1) by

O(Z(K]):(s”, iajzla"'7l7

and denote the highest root § by

l
0= ijaj, m; € 7.
=1

3 The Cartan involution which commute to an automorphism
of finite order.

Let g be a n-dimentional non-compact simple Lie algebra over R. Let 6 be a Cartan involution
of g and
g=top, O=1Id} 60,=-1d|
the corresponding Cartan decomposition. Let o be an automorphism of order k on g, i.e.,
oF =1d,0" #1d(i = 1,2,...,k —1). Then I = {Id,0,02,...,0% 1} is a compact subgroup of
Aut(g).
Let 6 be a Cartan involution of GL(n,R). From 1.1 of [1] any Cartan involutions of Aut(g)

are induced from 6. For simplicity, these Cartan involutions of Aut(g) are also represented by
0. Since ad(g) = g and g = £ @ p, we have ad(g) = ad(t) & ad(p).

Let L = (Aut(g))’(= {p € Aut(g): () = 0}).

Lemma 3.1 ([1]). (i) L is a maximal compact subgroup of Aut(g).
(ii) Lie(L) = ad(¥).

(iii) Every compact subgroup in Aut(g) is conjugate to a subgroup in L.



Lemma 3.2. There exists a mazimal compact subgroup of Aut(g) containing T.

Proof. Since Aut(g) is a closed subgroup of GL(n,R) and represented by an algebraic equation,
Aut(g) is a reductive algebraic subgroup of GL(n,R). Note that Lie(Aut(g)) = ad(g). Since g
is simple, the center of g is {0}, and hence we have ad(g) = g.

Now, from Lemma 3.1(iii) I" is conjugate to some subgroup I'" of L under 7 € Ad(exp(ad(p))),
that is, I = 7['7~!. From Lemma 3.1(i) 77'L7 is a maximal compact subgroup of Aut(g
containing I'. O

Let B be a maximal compact subgroup of Aut(g) containing I'. Then there exists 7 € Aut(g)
such that B = T_NILT, which together with Lemma 3.1(ii) implies that Lie(B) = Lie(L) = ad(¥).
Let b = Lie(B), b = ad(b) and o € I". Since I' C B, we have

cBo~'c B-B-B=B8.

In particular, if B, is the identity component of B, then we have

0300—1 = B,.
B, is a closed set in a compact set Bso B, is a compact Lie group.

Lemma 3.3. o(b) =b.

Proof. If Y € b, then expt(ad Y) € B, and for any t € R

exp(to(ad Y)o 1) = o(expt(ad Y))o ! € 6B,0~ = B,.

It follows that

ad(o(Y)) = % . expt(ad(a(Y))) € Lie(B,) = b.

Thus we have o(b) C b. Therefore o(b) = b. O

Proposition 3.4. Let g be an non-compact simple Lie algebra over R with an automorphism o
of order k and g° the fized point set of o in g. Then

(i) There exists a Cartan involution that commutes with o.

(ii) If 61 and Oy are Cartan involutions preserving g%, then there exists an automorphism T of
g preserving g° such that 76,7~ = 0.

Proof. (i) Let b be constructed above. Since b is a maximal compact subalgebra, there is a
Cartan decomposition

g=babt

where bl denote the orthogonal complement with respect to the Killing form B. Let w be the
corresponding Cartan involution. From Lemma 3.3 for any X € b there exists X’ € b such that
o(X') = X. Soif Y € b, then we have B(X,o(Y)) = 0. It follows that o(b+) C bt. If X € b,
then since b+ C g = o(g), there exists X’ € g such that X = ¢(X’). For any Y € b, from
Lemma 3.3 we have o(Y) € b so B(Y,X’) = B(o(Y),X) = 0. Thus b* C o(b") and therefore
bt =o(bt).



Now, if X = Xy + X1 € g (Xp € b, X1 € b1), then
ow(Xp + Xp1) = 0(Xp) — 0(Xpr).
Because of o(b) = b and o(b) = b, we have
wo(Xp + Xp1) = 0(Xp) — o(Xp1).

Consequently, we have ocw = wo.

The statement (ii) is proved in the same way as in the proofs of Lemma 3 and Lemma 4 in
[7] as follows. It is shown as in [3] that 626, is a self-adjoint transformation of g with respect
to positive definite inner product By, (By, (X,Y) = —B(X,0:(Y)) for X,Y € g). Since g7 is
0:1-stable and 6,-stable, we can take an orthonormal basis { X1, - - - , X,,} such that {Xq, -+, X, }
is a basis of g7 and 620, is represented by a diagonal matrix with respect to this basis. Put
P = (#20)? and define P'(t € R) as in [3]. Then P(g%) = g° so P(g°) = g°. Put 7 = P4
Then it is easy to see that 76,7~ ! = 65. Thus, 7 is an automorphism of g preserving g°. O

4 Compact dual.

Let g be a non-compact simple Lie algebra over R with an automorphism o of order four. By
Proposition 3.4 there exists a Cartan involution € of g such that 6o = 0. Let

g=top

be the corresponding Cartan decomposition of g.
Let m be the orthogonal complement of h := g7 in g with respect to the Killing form, that
is,
g=bhom
Then we have

(4‘1) H(b) =, H(m) =m, U(E) =t U<p) =p.

In fact, Since o = o6, it is obvious that 6(h) = b, o(¥) = ¢ and o(p) = p. Similarly as the proof
of Lemma 3.3, we obtain #(m) = m.

Lemma 4.1. The following decompositions are direct:

hb=ONH@(hnNp), m=mNE) S (mNp),
t=(nheENm), p=(pNh) & (pNm).

Proof. If Hy+ Hy € b (He € £, Hy € p), then we have He + H, = 0(Hg) + o(H,). It follows from
(4.1) that o(H) € € and o(Hy) € p so He, H, € h. Thus we have a direct decomposition

h=OHnt)e(hnp).

If Xe+ X, €m (Xe € £, X, €p), then we have m > 0(X¢ + X;) = X¢ — X;,. Thus we have
2Xp = (X¢ — Xp) + (Xe + X)) € mso X¢ € m. Therefore we obtain

m=(mnN¢) e (mnNp).



If X+ Xm €t (Xy €b, Xy €m), then we have Xy + X = 0(Xpy+ X)) = (X)) +0(Xw). It
follows from (4.1) that 6(Xy) = Xy and 0(Xy) = Xm so Xy € h N € and X, € m N €. Therefore
we get

t=(hNne)d (mne).

Similarly as above, we have p = (hNp) & (mNp). O
Let g* be the compact dual of g, that is,
gr=tep (p =v-1p),

and 7 an automorphism of g such that 76 = 7. Then we have 7(¢) = £ and 7(p) = p. Thus we
can define the mapping 7* : g* — g* by 7"(X¢ + v —1X,) = 7(Xe) + vV —17(X,)(Xe € £, X, € p).

Lemma 4.2. 7" is an automorphism of g*. If the order of T is k, then the order of 7* is k. If
7 £1d, then (7*)F #1d.

Proof. 1t follows from the definition of the mapping 7 that 7* preserve the bracket so 7 €
Aut(g*). Since 7(g) = g, we have (7*)¥(X¢ +/—1X,) = 78(X¢) + v—17%(X,). Thus the second
assertion is trivial. O

We call the automorphism 7* of g* defined in Lemma 4.2 the automorphism of g* induced
by T.

Lemma 4.3. o*0* = 0*c*.

Proof. Since §(t) = ¢, O(p) = p and (4.1), if X¢ +/—1X, € g* (X¢ € £, X, € p), then we have

o (Xe + V—-1X,) = 0(Xe) — V—1o(X;) = 00" (Xe + vV—1X,). O
Now, we have a direct decomposition
(4.2) (@) =0hnyev=1hnp).

Indeed, if Xp+v/—1X, € (g7)7 (X¢ € &, X,y € p), then we have X¢++v/—1X,, = 0*(Xg+v/—1X,) =
o(X¢) ++v—10(X,). From (4.1) we have o(X¢) = X; and 0(X,) = X,, and hence X, X, € h. It
follows that (g*)?" C (hN€) ®+/—1(hNp). On the other hand, by the definition of the mapping
o* it is clear that (g*)° D (hNE) & v—1(hNp).

Let g;(i = 1,2) be a non-compact simple Lie algebra over R with an automorphism o;
of order four and 6; a Cartan involution of g; such that 0;0; = 0;0;. Let ¢ and p; denote
eigenspaces of 0; for the eigenvalues +1 and —1, respectively. Let g} and g5 be the compact
dual of g1 = & @ p1 and go = € D po, respectively, that is, gi = & @ pi(p} = V—1p1),
g5 = & @ pi(ps = +/—1p2). Suppose that there is an isomorphism p : g1 — go satisfying
() =2, p(p1) = p2 and u((g1)?*) = (g2)?2. Then, we can define the mapping p* : g7 — g5 by
W (Xe, +V-1Xp,) = u(Xe,) + V—1p(Xp,) (Xe, € 1, Xp, € p1). It is obvious that p*(8) = &
and p*(p7) = p5. Moreover, it is easy to see that

(4.3) W ([ Xey + \/lePNYh + \/jlypl]) = [1*(Xe, + \/lepl)nu*(Yh + \/jlym)]’

for X¢,,Ye, € €1, X,,,Y,, € pi. Thus p* is an isomorphism of g} into g3. Let o(i = 1,2) be
the automorphism of g induced by o;. From Lemma 4.1 and (4.2) and the definition of the
mapping u we have

u((g1)7 NE1) & V—=1p((g1)” Np1)
(92)7% NE2) & V—1((g2)7 N p2)
g5)%%.

w*((e7)7)

(4.4) =
=



5 Isomorphism

We define the isomorphic between two compact simple Lie algebras with order two and four
automorphisms. Let g* be a compact simple Lie algebra over R with an automorphism ¢* of
order four and #* an involution of g* such that ¢*0* = 0*c*. Let ¢ and p* denote eigenspaces
of 0* for the eigenvalues +1 and —1, respectively. In this section we denote it by (g*,o*, 6*)
simply.

Two triples (g7, 07,07) and (g3, 03, 05) are called isomorphic if there exists an isomorphism
[z gy — g3 satisfying (&) = &, p*(p) = p3 and p*((g7)71) = (g3)72.

Remark 5.1. As stated in Section 1, for any triple (g*,0*,0*) the automorphism (o*)~! leaves
(%) inwvariant. Thus (g*, (0*)~1, 0%) will be identified with (g*,o*,0*).

Suppose that the triple (g7, o7, 07) is isomorphic to (g3, 03, 605) and the corresponding iso-
morphism is p*.

Let g1 and g2 be the non-compact duals of g7 = € ® p] and g5 = €2 @ pj, respectively, that
is, g1 = &1 © p1(p1 = V=1p}), g2 = €2 © pa(p2 = v/~ 1p3). Since p*(€1) = €2 and p*(p}) = p3,
we can define the mapping g : g1 — g2 by u(Xe, + vV—1Xp:) = p*(Xe,) + V—=1p"(Xps) (X, €
b, Xypr € p7). Let 0;(i = 1,2) be the automorphism of g; induced by ¢}. Then by an argument
similar to that in Section 4 p is an isomorphism of g; into go such that p(€;) = €2, u(p1) = po

and p((g1)7") = (g2)72.
The following Lemma is a compact version of Lemma 4.2. The proof is also similar.

Lemma 5.2. Let g* be a compact simple Lie algebra, 0% an involution of g* and g* = €D p* the
corresponding direct decomposition of g*. Let g denote the non-compact dual of g*. Then for
each automorphism 7 of g* such that 7*6* = 6*7*, the mapping 7 : g — g by 7(Xe++v/—1Xp+) =
T (Xe) + V=17 (Xp+ ) (X € €, Xy € p*) is an automorphism of g. If the order of T is k, then
the order of T is k. If (7*)F # Id, then 7% # Id.

We also call the automorphism 7 of g defined in above Lemma the automorphism of g induced
by T*.
From Lemma 5.2 o and 07 (i = 1,2) induce 03, 0; € Aut(g;), which satisfy (0;)* = 1d = (6;)2.

Lemma 5.3. 05 = u@l,u_l, O;0; = 0;0; (Z = 1,2).

Proof. 1f we take X, € ¢ and Xy: € pj(i = 1,2), then from (4.1) we find 0*(Xe,) € ¥ and
o*(Xpr) € p;. Thus it is easy to see that 6;04(Xe, + v—1Xp+) = 040;(Xe, + vV —1X,x). Since
f1(81) = €2 and p(py) = p3, we see that pbp= ' (Xe, + V—1Xp;) = Xe, — V—1Xp; = Oo(Xe, +
V—=1Xy:). O

Let g be a non-compact simple Lie algebra over R with an automorphism o of order four
and 6 a Cartan involution of g such that 06 = 6. Let £ and p denote eigenspaces of 6 for the
eigenvalues +1 and —1, respectively. In this section we denote it by (g, o, 6) simply.

From the above consideration, two triples (g1,01,61) and (g2,02,02) are called isomor-
phic if there exists an isomorphism p : g1 — go satisfying p(t1) = €2, u(p1) = p2 and
1((g1)°") = (g2)?2. The set of all isomorphisms u : (g1,01,601) — (g2,02,02) is denoted by
Isom{(gl, g1, 91), (gg, g, 92)}

Remark 5.4. By an argument similar to Remark 5.1 (g,071,0) will be identified with (g, c,0).

From Lemma 5.2, Lemma 5.3 and the argument as above we have following.



Lemma 5.5. If (g],07,67) is isomorphic to (g5,05,05), then the non-compact duals of g7 and
g5, denoted as g1 and g2, generate non-compact triples (g1,01,61) and (g2,02,62) and these
triples are isomorphic.

Conversely, if two non-compact triples (g1, 01,601) and (g2, 02, 02) are isomorphic, then using
a similar argument to the one used to derive (4.3), (4.4), Lemma 5.2 and Lemma 5.3, we can
construct two compact triples (g7, o7, 07) and (g5, 03, 05) which are isomorphic, i.e., the following
holds.

Lemma 5.6. If (g1,01,601) is isomorphic to (g2,02,02), then the compact duals of g1 and ga,
denoted as g7 and g5, generate compact triples (g5, 07,07) and (g5,05,05) and these triples are
isomorphic.

Remark 5.7. If a compact triple (g3, 07,07) is not isomorphic to a compact triple (g5,05,63),
then by Lemma 5.6 the non-compact triple (g1,01,01) is not isomorphic to the non-compact
triple (g2,02,02). Suppose that the non-compact 4-symmetric pair (g1,01) is isomorphic to the
non-compact 4-symmetric pair (g2,02). Put by = (g1)7* and b = (g2)?2. Then there exists an
isomorphism ¢ : g1 — g2 such that ¢(h1) = bha. Since (gz)wl‘ff1 = b, and Cartan involutions
001071 and 0y preserve bo, it follows from Proposition 3.4 (ii) that there exists T € Auty,(g2)
such that T(ph1o~ ) 771 = 0y. It is obvious that

(o) (1) = by (79) (1)) = (g2)#P1% " = (go)™¥01% 7" = (go)%2.

Thus (g1, 01, 61) is isomorphic to (g2, 02,02), which is contradiction. Consequently if a compact
triple (g37,07,07) is not isomorphic to a compact triple (g5,05,03), then the non-compact 4-
symmetric pair (g1,01) is not isomorphic to the non-compact 4-symmetric pair (g2, 02).

1

6 Classification

Let g be a non-compact simple Lie algebra over R with an automorphism o of order four. Let
b denote the fixed point set of o in g. Suppose that h¢ contains a Cartan subalgebra of gc. In
this section we classify triples (g, o, #) under the isomorphism defined by Section 5 in the case
where dim(3(h)) < 1.

Owing to Proposition 3.4, there exists a Cartan involution 6 such that o = . Let g = t®p
be the corresponding Cartan decomposition of g. Let g* denote the compact dual of g and o*
the automorphism of g* induced by o. Let h* denote the compact dual of h. Then by (4.2) we
have h* = (g*)°" and hence

bt = b e V-1p
= (hne)@avV-1bnp) e (V-1(HNe) @ (hNp))
= (hbn®)y@((hnp)ovV-1((hne) @ (hnp))
= hoV-1p
= be.

Let t* be a maximal abelian subalgebra of h*. Since hc contains a Cartan subalgebra of
gc, the dimension of . is equal to the dimension of the maximal abelian subalgebra of g*.
Suppose that there exists a maximal abelian subalgebra t of g* such that t* C . If ¢ is an
outer automorphism, then the dimension of tf is less than the dimension of fc, which is a
contradiction (cf. Theorem 5.15 of Chapter X of [3]). Thus t* is a maximal abelian subalgebra



of g*, so t* C h* C g*. Therefore there exists T' € t* such that o* = Ad(expT') (cf. Proposition
5.3 of [3]).

Let Int(g*) be the set of inner automorphisms of g*. Since the dimension of the center of h*
is 0 or 1, 0* € Int(g*), Lemma 2.4 and Remark 2.2 of [5], ¢* is conjugate within Int(g*) to one
of the following oy:

oy = Ad(exp g\/—lKi)(mi = 3,4) or Ad(exp %x/—il(KZ + K;))(m; = mj = 2),

where K; and m; is defined in Section 2, meaning that there exists 7§ € Int(g*) such that
mto*(13)~! = of. Thus the triple (g*,0*,6*) is isomorphic to the triple (g*, o8, 750* (75)™1).
Let Auty«(g*) be the set of automorphisms of g* preserving h* and let hy := (g*)°0. According
to [5] and [6], 0} := 750*(75)~! is conjugate within Autps (g7) to 6*, which is listed in [5] and
6], i.e, there exists 7 € Autys(g*) such that 0* = 770%(r;)~". By the definition of % we
have 77 ((g*)%) = (g*)?". Thus the triple (g*,of,67) is isomorphic to (g*, o, 6*), so the triple
(g, 0", 6%) is isomorphic to the triple (g*, o§, é*) Therefore, all non-compact triples (g, o, 0) are
isomorphic to one of the non-compact duals of the compact triples (g*, o, 8*) classified in [5]
and [6].

We suppose that g* is of type e7. From what has been mentioned above, it suffices to consider
the involution 6* of ¢7 that commute with each order four automorphism o* of e7. Let t* be a
maximal abelian subalgebra of the fixed point set h* := (e7)°  and let £ denote the fixed point
set of 0*.

First, we assume that 6| = Id. Then by Lemma 2.4 and Remark 2.2 of [5] we have
o* = Ad(exp(n/2)v/—1K), where

K =Ky, K3, K5, K1+ Ky, K1+ Kp.

It follows from the lists of [5] and [6] that 6* is conjugate within Auty-(e7) to one of automor-
phisms listed in Table I.

Next, we assume that 6|+ # Id. Then by Theorem 10.1 of [5] and Theorem 8.1 of [6] we
have o* = Ad(exp(r/2)y/—1K), where

K = Ky, Kj + K.
Define ¢ € Aut(g*) by

(6.1) @(Eal) = EOtG’ QO(EDQ) = EOtQ’ 2 5
@(Eas) = Eaga (p(EOZG) = E0l17 SO(EOW) = Eam

where {Eq, ..., Eq,} is the Weyl basis of e7. Then, * is conjugate within Auty-(e7) to one of
automorphisms listed in Table I (cf. [5], [6]).



Table I: g* = e7

h* =s0(6) Bso(6) dsu(2), K=K,

WO =) ¢ b e
K, 50(12) @ su(2) | s0(6) ® (s0(4) +s0(2)) & su(2)
K, su(8) 50(6) ® s0(6) @ s0(2)
K, 50(12) @ su(2) | s0(6) @ s0(6) ® su(2)
K+ Ky e6 DR 50(6) @ (s0(4) + s0(2)) ® s0(2)
Ki + Kg 50(12) @ su(2) | (so(4) +s0(2)) ® (s0(4) + s50(2)) D su(2)
K3+ K7 su(8) u(3) & u(3) @ su(2)
Ky + Ky + Kg | su(8) (s0(4) 4+ s0(2)) @ (s0(4) + s0(2)) D s0(2)
Ky + K3+ K7 | 50(12) ®su(2) | u(3) @ u(3) @ so(2)
K3+ Ki+ K7 | g ®R u(3) ®u(3) dsu(2)

h* =su(6) dsu(2) R, K = K3

h(0* = 1) ¢ b e
K, 50(12) @ su(2) | su(6) ®so(2) @R
Ko s5u(8) s(ud)+u(l)) dsu(2) ®R
K3 50(12) @ su(2) | su(6) ®su(2) @R
Ky 50(12) B su(2) | s(u(4) +u(2)) @su(2) @R
K5 su(8) s(u(3)+u3) esu2) R
K; e6 B R s(u(d)+u(l)) dsu(2)dR
K1+ Ks e6 DR s(u(b) +u(l)) ®so(2) ®R
K1+ Ky 50(12) & su(2) | s(u(4) +u(2)) &so(2) &R
K+ Ks su(8) s(u(3) +u(3)) dso(2) &R
K3+ Ky 50(12) & su(2) | s(u(4) +u(2)) @su(2) &R
K3+ K5 ¢6 DR s(u(3)+u3) esu2) R

h* =su(b) ®su3) @R, K = K5

h(0* = 1) ¢ b e
K 50(12) G su(2) | s(u(4) +u(l)) @su(3) &R
K3 s50(12) @ su(2) | s(u(3) +u(2)) ®su3)dR
K; su(8) su(b) dsu(3) R
K s50(12) @ su(2) | su(b) ®s(u(2) +u(l))®R
K7 ¢6 DR su(b) ®s(u(2) +u(l)) ®R
K1+ Ks su(8) s(u(4) +u(l)) ®su3)dR
K1+ Kg s50(12) @ su(2) | s(u(4) +u(l)) ®s(u(2)+u(l)) @R
K1+ K7 ¢ DR s(ud)+u(l))®s(u(2)+u(l) R
K3+ Ks ¢6 DR s(u3)+u2)@su3)dR
K3 + Kg s50(12) @ su(2) | s(u(3) +u(2)) &su(2) +u(l)) &R
K3 + K7 su(8) s(u(3)+u2) ®su2)+u(l)) ®R

Table continued
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Table I (continued)

h* =su(6) dsu(2) ®R, K =K+ K»

WO = 13) ¢ h* N e
K s50(12) @ su(2) | su(6) ®su(2) dR
Ko su(8) su(6) ¢ su(2) R
K; su(8) s(u(3) +u(3)) ®so(2) R
Kg s50(12) ®su(2) | s(u(4) +u(2)) ®su(2) &R
K; e6 DR s(u(b) +u(l)) ®so(2) ®R
K|+ Ky g ®R 511(6) EBSH(Q) PR
K1 + Ks 50(12) @ su(2) | s(u(4) +u(2)) dsu(2) &R
K>+ K5 50(12) ®su(2) | s(u(3) +u(3)) ®so(2) ®R
Ks + Kg e R s(u(4)+u(2))®su(2)dR
Ky + K7 50(12) @ su(2) | s(u(5) +u(l)) @so(2) &R
K+ Ko+ K¢ | su(8) s(u(4) +u(2))®su2)d R
h* =s0(8) Pso(4) @R, K = K; + Ks
h(O* = 1) € b e
K, 50(12) @ su(2) | so(8) dso(4) ®R
Ky su(8) su(4) @ so(4) @ R?
K3 50(12) @ su(2) | su(4) su(2) oR3
K, 50(12) @ su(2) | (so(4) +s0(4)) Bso(4) ®R
Ky ¢6 ®R 50(8) @ su(2) @ R?
K| + Ky e ®R su(4) @ so(4) © R?
K+ Ks 50(12) @ su(2) | so(8) dso(4) ®R
Ky + Ky 50(12) @ su(2) | su(4) ® (s0(2) + s0(2)) ® R?
K3 + K7 su(8) su(4) ®su(2) OR3
K4+ K7 su(8) (s0(4) +s0(4)) @ (s0(2) +s0(2)) &R
Ki+K3+K; | eg®R su(4) @ su(2) o R?
h* =s0(6) Bso(6) dsu(2), K=K,
0 ¢ h* N e
® e OR su(4) ®sp(1)
© O TK, su(8) su(4) ® so(2)
Yo TK, su(8) su(4) ®sp(1)
h* =s0(8) ®so(4) R, K = K; + Kg
0 ¢ b e
® ¢6 DR 50(7) @ su(2)
0O TK, su(8) (s0(5) + 50(3)) @ su(2)

¢ is the same involution as in (6.1) and 7, = Ad(exp mv/—1h).
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In the case where 6*|+« = Id, K = K4 and h = K}, since ¢ = s0(12) @ su(2), the non-compact
dual of e¢7 is isomorphic to e7(_5) (cf. Table V of Chapter X of [3]). Let o be the automorphism
of e7(_5) induced by o* and b := (e7(_5))?. Since

h* = 50(6) B so(6) Dsu(2), h* NE=s0(6) D (s0(4) + s0(2)) ® su(2),

Lemma 4.1 and (4.2), b is isomorphic to so(6) & s0(4,2) & su(2).

Similarly as above, from Section 5 we can determine g and h := g° up to isomorphism for
all cases. We must be remark the case where there exists a center R\/—1K. In this case, we
can check the center R\/—1K is contained in h N €. Thus, similarly as above, for all h, we can
determine g and h up to isomorphism listed in Table III and IV. For example, if K = K3 and
h = K1, then we have

g = er_s), h=su(6) @sl(2,R) @ R.

In the case where 0*|¢ # Id, if 0* = Ad(exp(7/2)/—1K4) and 0" = ¢, then similarly as in
0| =1d. If K = Ky + K¢ and 0* = ¢, then there exists the center Ry/—1(K; — Kg). Since

t= span{K1 + K¢ — 2Ky, Ko — K7, K3+ K5 — 3Ky, K4 — 2K7},

(6.2) * = span{K1 — KG, Kg — K5, K7},

the center Ry/—1(K; — Kg) is contained in h* Np*. Thus h = s0(7,1) so(3,1) & R.

Remark 6.1. In the case of o* = Ad(exp(n/2)v—1(K| + K3)), if £ = (g*)AdeemV=1Ke) 44
ty = (gr)AdleenV=LEI+Ke)) then ¢ = A; @ Dg = €. However, Ad(expmy/—1Kg) is not
conjugate within Auty-(g*) to Ad(exp mv/—1(K1 + Kg)). In fact, & and €y can be written as the
direct decompositions

=to Y (RA,+RB),

acAT
a(Kg)=0,2

By =t > (RA, +RB,),
a=yT_; njo €At
(n1,m6)=(0,0),(0,2),(1,1),(2,2)
respectively. Let Ay, = {o € AT(gg, t8); Aa, Ba € 8}(i = 1,2). If a € Ags and oK) = 0, then
arta ¢ A If a € Ay and a(Ke) = 2, then the cofficients of ag and a7 of a are 2 and 1,
respectively, so ay £ o & A. Therefore for €1 we have

(6.3) A1 = su,.(2) C h™.

On the other hand, if o = Zzzl nio; € Ay, and (n1,ne) = (0,2), then a = ag + a3z +
204 + 205 + 206 + 7. If B = as + az + 2a4 + 205 + 204 + a7 € Agg, then since there
are no roots o = Y.I_ myay such that (my,me) = (1,3),(2,4), we have § +~ ¢ A where
v = Zzzl nio; ((n1,ne) = (1,1) or (2,2)). Consequently, for any o € Ay,, we have f+a ¢ A,
50

(6.4) A1 = 5115(2) §Z h*

Suppose that Ad(exp mv/—1Kg) is conjugate to Ad(expmv/—1(K; + Kg)). Then there exists
€ Auty-(g*) such that

1 (Ad(exp v/ —1Kg)) (") ™t = Ad(exp mv/—1(K; + Kg))
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This p* satisfies p*(81) = 2. Thus p*(suq,(2)) = sug(2), which is contradicts (6.3) and (6.4),
that is, u* do not preserve h*.
We put B := ao + a3 + 20 + 2a5 + og. Then it is easy to see that T :=tg oty € Auty«(g*),

7(Ad(exp mv/—1(K1 + Kg)))7 ' = Ad(exp v/ 1K)

and
7(Ad(exp g\/ —1(K; + K3)))7! = Ad(exp g\/—l(ZKl + Ko + 3K5 + K7)).

Therefore two triples
(e7, Ad(exp g\/—l(Kl + K5)), Ad(exp mv—L(K; + Kg)))

and
(e7, Ad(exp g\/—l(QKl + K, + 3K5 + K7)), Ad(exp mv/—1Kg))

are isomorphic.

In the same way as above, for which g* is of all types we can determine g and h up to
isomorphism , which are listed in Table II-IV.

*

Remark 6.2. There are three additional sets of non-isomorphic triples (g*, o*, 0*) where g*, (g*)°
and (g*)%" are equal, similar to those shown in Remark 6.1 (see Lemma 7.1 of [6]). These have
the following isomorphism.

The triple (e7, Ad(exp(m/2)v/—1(K1+ Ks)), Ad(exp mv/—1(K1+ Kg))) becomes isomorphic to
the triple (e7, Ad(exp(m/2)v/—1(3K;1 + 2Kg)), Ad(exp m/—1K7)) using the root reflection tata,
where § = a1 + as + 2a3 + 204 + as.

The triple (es, Ad(exp(7/2)v/—1(K1 + Kg)), Ad(exp mv/—1(K1 + Ks))) becomes isomorphic
to the triple (es, Ad(exp(3m/2)v/—1K3), Ad(exp mv/—1K3)) using the root reflection tzta, where
B =g + az + 204 + 205 + 2066 + 207 + 0.

The triple (f4, Ad(exp(m/2)v/—1(K1+Ky)), Ad(exp mv/—1(K1+ Ky))) becomes isomorphic to
the triple (f4, Ad(exp(m/2)vV/—1(K1+2K4)), Ad(exp m/—1K1)) using the root reflection to, +as-tas-

Consequently, noting Remark 5.7, we obtain the following classification theorem.

Theorem 6.3. Let (G/H, o) be a 4-symmetric space such that G is a non-compact simple Lie
group of the exceptional type with the Lie algebra g, and b denote the Lie algebra of H with the
center 3. Suppose that dimz = 0 or 1 and hc contains a Cartan subalgebra in gc. Then the
following Table II-1V gives the complete list of g, b, €(= g°) and bh N € of the possibilities up to
isomorphism.
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(ene (g)n (91)os | L37 + 937 + 2y (957 °(9),95 @ (0T),05* %x

((g)os + (v)os) @ ((1)os + (9)08) (91)os 85 + &7 (937 “(T F)os @ (1 ‘9)os (3)%9)

(ene (g)n (gns @ Lo L[+ Ty (957 4(9) .08 @ (01),05 (e )%a)

((@)os + (v)os) @ ((g)os + (8)09) (g)ns & L S + 1y (0312 )os @ (" g)os (1 w@

((2)os + (v)os) @ (01)0s (¢)ns & L 1 (937 (2 ‘7)os @ (01)0s (12 )8)

(9)os @ (01)08 (91)os 'l (937 (9)os @ (0T)0s*(®)%9)

(9)os @ (()o5 + (9)0s) (g)ns & L2 €y (957 “(9)05 @ (F ‘9)o0s“(F2—)8)

(9)os @ ((g)os + (8)0s) (91)os B’ (97 ‘(9)0s @ (g ‘g)os ‘%)

(@)os @ ((¢)n + (9)n)s (91)0s Oy + 1 (€3 ‘(e)ns & (g ‘g)ms %Nv

(@)os & ((@)n+ (9)n)s (g)ns @ L Y+ Ly (837 ‘(2)ns @ (g ‘g)ns < (167)8)

(gms @ (F)n+ (F)n)s (z)ns @ La 9y + €y (&7 (ems @ (3 i:mn:& vwgv

(gns @ (p)ds (91)0s T+ £y (£37 “(2)ns @ (g) .ns*(8)%))

(@ns @ ((F)n+ ()n)s (91)0s 1 (€37 “(e)ns @ (3 ‘p)ns < (8)%a)

(g)ns & (p)ds (g)ns & L2 Y (637 “(g)ns @ (8) ns“ (1E—)8y)

ANVSW ) vazm ANVSW DL €y AMVN ”A vzm s AwVSWRQN vwwv

(¢)os & (8)ns (91)os 7 (537 ‘(A D)5 @ (8)ns (®)8a)

(ems @ (e)nd (e)n MO % | L+ +87 | (D7 (g)ns @ (9),05 B (9), om;mm VSV

(2)os © (e)n @ (e)n | (g)ns & (21)os | &7 + €7 + 7 | (727 (A 2)s © (9).05® (9), 0s(67)l)

(2)os & ((g)os + (v)os) @ ((g)os + (¥)0s) (8)ns | 937 + 27 + Ly | (W ‘(A ‘2Ns © (¢ °7)0s @ (¢ 'p)os (Ha)

(ems @ (en e (¢)n (8)ns L3 + €y (731 “(2)ns & (9).05 ® (9). cm %@

(@ns @ ((g)os + (1)05) @ ((2)os + ()os) | (2)ns & (g1)0s O + 137 | (" (e)ns @ (2 F)os @ (g p)os (7)4)

(2)ns  ((g)os + (7)os) © (9)os A B 92 T+ 1 | (" (A Ths D (¢ 7)os @ avomém )

(2)ms @ (9)os @ (9)os | (g)ns @ (g1)os 574 (737 “(g)ns @ (9)0s @ (9)os *(S7)La)

(¢)os & (9)os & (9)0s (8)ns ey (31 (A ehs @ (9)os & (9 v )

(¢)ns @ ((g)os + (1)05) @ (9)os | (g)ns @ (g1)os ') ("3 ()ns @ (g ‘F)os @ (9)os (&)%)
1UQ 3 ("L =.0)Y (51 °G°B)

(,8 =3 pue (1 (g/L)dxe)py =

L0 ‘0= fwp :I[ 9[qRT,

14



A\Q.H| >kQN®v@< — Yy podm - ndm Zudm pa wdm «mdm — mdm nmdm — mdm pedm — Tom © A

(1)ds & (p)ns (s | Miod | (7 (g)ns @ (P)ns Nv

(¢)os & (y)ns (8)ns Mo | (AT D (v v x

(1)ds & (y)ns A D 9% b | ("3 (g).ns @ (p)ns(6-)ka)
1UQ _ 3 _ 0 _ (31 G °B)

(2)os @ (9)os [ (ems@ (e)ds [ vy + Ly [ (v (1205 @ (9 v )

(2)os & (9)os (6)0s P | (83 4(1T)os @ (9)os (06 ITY)

(g)os & (9)os (6)0s | (5 (g)os @ (9)os (06 TY)

(€)os @ ((g)os + (p)os) | (g)ns @ (¢)d | (Bx(g)os@ (g V )
100 7 3 | (e =0y | (51 °°B)

(Ponunuod) I1 d[qeT,
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PINULIUOD ]QD],

AP (g)ns @ ((e)n+ (g)n)s A % Sy + €37 (87 WD (gns @ (¢ ‘¢)ns @T:&
M (2ns & ((@n+ (F)n)s | (2)ns @ (g1)0s TS+ By (637 W (g)ns & (g ‘p)ns*(€7)La)
A (2)os @ ((g)n+ (e)n)s (8)ns o7 + Ty (B3 A @ (A oNs @ (g g)ns ‘(L)L)
A D (g)os @ ((en+ (F)n)s | (o)ns @ (¢1)0s VS 4+ 1y (E e (A Ths @ (¢ p)ms TEV
WD (2)os @ ((n+ (9)n)s AD 9 e + Ty (857 WD (M 25 @ (1 g)ns *(€6)La)
A (g)ns @ ((Dn+ (9)n)s D% Ly (837 W @ (g)ns @ (1 ‘c)ns *(87)La)
AP (o)ns & ((g)n+ (e)n)s (8)ns Y (M@ (gms & (¢ @ egv
A D (ens & ((en+ (7)n)s | (g)ns & (g1)os 6%} (837 ‘WS (g)ns & (g ‘p)ns*(¢7)La)
A (2)ns @ (9)ns | (g)ns & (g1)0s €57 (637 M B (g)ns & (9)ns*(67)da)
AD (s @ ((1)n+ (g)n)s (8)ns ey (B 9® (g vé@A 3 Csv
S (g)os @ (9)ns | (g)ns & (g1)os B’ (B9 ahse (9 v )
AD (@ns @ ((n+ (gn)s @ ((1)n + (g)n)s AS(0T)os | ST +M+1y | (M US (T vzm@: oms @ (1 @ 1-)95)
AS (@osd ((n+ (g)n)ss (n+ (g)n)s | (gms@ (9)ns | ST+ 27+ 17 | (T A S (A gm@: ‘ems & (1g)n mégv
AD (2)os @ (ens @ (e)ns | (g)ns @ (9)ns [+ 2 ("M@ (M 2)s @ (g)ns @ (g)ns “(©9)
A (s ((Dn+ (@n)so (Dn+ (gn)s | (s @ (9)ns ST+ | (e (@ms® (1g)ns @ (1 g)ns ©)9%)
AO (2)os @ (e)ns @ (()n + (g)n)s M@ (01)0s o+ | (@ (gns @ (g)ns @ (1 ‘g)ns (11-)9)
WD (s d (e)ns @ ((T)n+ (gn)s | (g)ns @ (9)ns o7 (731 WD (2)ns @ (g)ns & (1 ‘g)ns (@)9%)
AD (@)ns @ (e)ns @ (e)ns | (g)ns @ (9)ns 1Y) (W@ (2)ns & (£)ns @ (g)ns(@9)
S (s @ (s (On+ (@)n)s | A @ (o1)os 7| (e (@)ns @ (g)ns & (1 ‘g)ns (1-)9%)
3UQ 3 (e = ,0)y (31 Q‘B)

B =31pue (31— (g/v)dxo)py =

0 T = fup [T d[qRL,
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PINUUO0I 2]QD],

AD ((g)n+ (9)n)s (9n)os | "7+ 2y CTREIC 33 %Nv
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AD (s @ ((g)n+ (g)n)s | (g)ns D (g1)os €31 (957 W (g)ns @ (g ‘g)ns*(§)La)
AB (s @ (Dn+ (7)n)s | (g)ns @ (g1)os 15's (537 A @ (g)ns @ (1 ‘p)ns (€)L)
3U0 3 | (e =.9)Y (51 °G°B)

(Ponunuod) I1 9[qRT,
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wdm - vdm pmdm — mdm nNdm — Ndm «@dm Y Hdm : Qw
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A D (e)ns @ ((g)n + (7)n)s (8)ns | 937 + 237 + Ty (S + L AP (g)ns P Amizm; )La)
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(g)os @ ((e)n+ (e)n)s | (g)ns @ (1)os 93 + ¢y (&7 + 7 ® (Mons @ (gie)ms (67)L)
t vzm@x m+ (p)n)s | (¢)ns @ (g1)0s 9 | (5] + 1€+ + 12 A D (2)ns D (g iéé )L3)
@ (z)ns @ (9)ns D 9 oy + 1y (4 + g @ (g)ns @ (9)ns )l)
A (¢ vom@Q n+(g)n)s A D 9 L3y (237 4+ 7 W D (M TNs @ (T ‘o)ns *(96-)La)
D (@s @ ((g)n+ (7)n)s | (g)ns @ (¢1)os DY (B + A (ens @ (g ﬁvsmé )23)
A D (¢ VS@Q e+ (e)n)s (8)ns 5l (B + 7@ (M @ (g g)ns (Lia)
@ (g)ns @ (9)ns (8)ns o (537 + 13 ‘W @ (g)ns @ (9)ns Wh)
@ (g)ns @ (9)ns | (g)ns @ (g1)08 5% (831 + 17 W & (g)ns & (9)ns“(§7)La)
D (g)os @ (g)os | (g)ns @ (9)ns | 7 + &7 + Ly (97 + 7 M@ (1°e)0s & (1 ‘g)os [@9%)
@ (§)os @ (9)os AP (01)0s Sy + €y (957 + €37 M @ (3)05 & (9)0s * (17)93)
%@Qvom@ﬁmvom.lwvcmv A @ (01)os €3 + 2y (957 + 7 WD ()05 @ (g F)os(F1-)9)
A @ ((g)os + (g)os) & (9)os @ (01)0s 95 + 137 (957 + €37 ‘M @ (g °T)05 & (9)0s *(117)93)
D ()os @ (g)os A D (01)08 a3 + 137 (957 + €7 WD (1°g)os @ (T ‘g)os  (©)9)
A D (P)os @ (9)os | (2)ns @ (9)ns ey (937 + EX W @ (F)05 ® (9)0s (©)9)
A D (F)os @ ((g)os + (7)os) | (2)ns @ (9)ns ey (937 + EX WD (F)05 @ (g F)os (©)9)
MO (en@(9)es | WD (01)os Yl (95 + €37 W & (7),05 @ (9)0s (1-)9)

31U 3 (L =.0)u (o1 °G°6)

8 =3 pue (31— M(g/x)dxe)py =

L0 ‘T = fwp : AT 9[qeT,
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PaNUUO0D QN

A (2 vé@z )0s + (8)0s) (91)0s 85 + Ty BT+ e (gnsa (v @3 %&
@ (g)ns @ (g1)o0s (g)ns @ L 8y (8¢ F%@@é@a%m 82)
A D (g)ns @ (9)n (91)0s £y + Iy (357 + I WD (2 vzm@a: (8)8)
A S (g)os @ (9)n (g)ns & Lo ST+ 17 | (1 + DU S (ADNs @ (21),05° 787)8)
& (g)ns & (z1)os (g)ns & Lo 7| I+ rue (e va@a%m c-)8y)
A (¢ vom@a )os + (9)0s) (91)0s ST BT+ IO M NsD(9° 88 #)%)
D (e)ns & ((7)os + (8)0s) (¢)ns & L B B +rae (@nse (v @om e-)8a)
A D ()ns ® (9)n (g)ns @ L2 67 | (3 + L7 WS (2)ns & (g1) 05 (787)8)
A (g)os & (9)n (91)0s o7 | B+ LTA® (s e a: % 2)
@ (g)ns @ (g1)os (91)o0s Ly (T + 17N (T vé@@% )8)
% @ (one (p)n W0 | Ly +E7+ Ty | (9 + Dy WD (7).08 @ (g),08 (56~ : ?)
A D ((g)os + (¢)os) @ ((7)os + (¥)os) (8)ns DI | O+ A (5e)osD (b 38 )
WS (e (p)n (8)ns L[+ €3] (95 + 137 WD (7).08 © (8) .05 (L)L)
A ((2)os+ (¢)0s) & (p)n | (2)ns & (g1)0s 4| (D + AP (20)os @ (8). omé f
A (F)os @ (|)os | (g)ns @ (gT)os 5% (7z+ e A @ (7)os & (8 v%é 2)
AD (p)os @ (F)n A D 9 ey + Ty (95 4+ L7 ‘A & (§)05 & (8),05 (7 )La)
A ((¢)os + (g)os) & (8)os A D 9 Iyl (9 + U@ (2 ie)os @ (8)os (6 )ka)
A6 (¥ Vom@: )os + (7)0s) | (z)ns & (g1)0s 6%} (95 + T WD (F)os & (¥ &8 §7)4a)
© (@@ (H)n | (g)ns @ (g1)0s 5') (957 4+ 17 A @ (7) .08 @ (8) 08 (47)La)
%@53@5 (8)ns 57 (957 + 137 ‘WD (7)05 @ (8),05(L)La)
@ (7)os @ (8)os | (g)ns @ (g1)os Ty (937 + L7 A @ (5)0s @ (8)0s(47)4)

mcs 3 | (L= .0y (51 °G°B)

(ponuryuod) AT S[qeT,
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‘IIT °Iqe], Pu® I 9[qB], Ul Se SUOIIN[OAUI JUIES oI (b pue ¢

(€)os @ (g)os (s | Prod | (O + WO @om@@é%i 2)
(¢)os @ (1)os A D 9 G| (1 + WS (1'g)os & (1°L)os (€6 )h)
A D (o)ns @ ((€)os + (g)os) (v)ds Lo (6 +Ex°(7).05 @ (¢ @3 (9)9,)
M D (£)05 B (9)0s " h (537 + 837 (1 °¢)0s @ (9)os (987)9%)
3UQ 3 0 (37 q‘B)
AD (1)ds @ (z)ds | (7)ns @ (¢)ds B (32 + A& (1)ds & (g)ds 1)
A D (1)ds & ((1)ds + (1)ds) | (g)ns @ (g)ds | €37+ Ly ("> + W@ (T)ds & (1 7)ds P7Y)
AD (T)ds @ (g)ds | (g)ns @ (g)ds S (37 4+ 137 W B (1)ds & (g)ds* )
A6 (1)ds @ ((1)ds + (1)ds) (6)os &7 | (4 N (T)ds @ (T 7)ds  (08)7()
D (T (g)n | (g)ns @ (g)ds o7 | (D47 a® (MT)ds & (3 ‘g)ds (M)
M (D@ (g)ds | (2)ns @ (g)ds Py ("3 + 7 WD (1)ds @ (g)ds <))
3UQ 3 L= ,9)Yy (370 ‘B)

(ponunuod) AT 9[qe],
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Remark 6.4. K € g* can be uniquely written as

Thus Kp« = 0 if and only if K € g = €& /—1p*. Therefore, if K € h* NE, then o* € Int(g*).
In the case of g* = e7 and 0* = , € and p* is given by (6.2). Thus K4 = (K4 — 2K7) + 2K7,
K, + Ko = (K1 + K¢ — 2K7) + 2K7 are not elements in h* N ¢, so the automorophisms which
induced by o* = Ad(exp(r/2)v/—1K4) and o* = Ad(exp(n/2)v/—1(K1 + Kg)) are not inner.
Similarly as above we can check that all the other /—1K in Table II-V are the elements in hNE.

Consequently, except for above examples in the case where g* = e7 and 0| # 1d, all auto-
morphisms o* of order four of g* can be written as o* = Ad(exp(7/2)v/—1K) for some K € E.
Therefore o* is an inner automorphism of g.
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