A certain class of non-compact 4-symmetric spaces of exceptional type

Hiroyuki Kurihara and Koji Tojo

Abstract

Let \mathfrak{g} be a non-compact simple exceptional Lie algebra over \mathbb{R} with an automorphism σ of order four and \mathfrak{h} the fixed point set of σ . Suppose that the dimension of the center of \mathfrak{h} is at most one and $\mathfrak{h}_{\mathbb{C}}$ contains a Cartan subalgebra in $\mathfrak{g}_{\mathbb{C}}$. In this paper we shall classify non-compact 4-symmetric pairs under the certain equivalence relation.

1 Introduction

It is known that k-symmetric spaces are generalizations of symmetric spaces. The definition is as follows:

Let G be a Lie group and H a closed subgroup of G. A homogeneous space $(G/H, \sigma)$ is called a k-symmetric space if there exists an automorphism σ of G such that

- $\sigma^k = \text{Id and } \sigma^l \neq \text{Id for any } l < k$,
- $G_o^{\sigma} \subset H \subset G^{\sigma}$, where G^{σ} and G_o^{σ} is the set of fixed points of σ in G and its identity component, respectively,

The classification of k-symmetric spaces is a fundamental problem for studying geometry of k-symmetric spaces. It is well known the classification of Riemannian symmetric spaces (cf. Helgason [3]). Gray [2] classified Riemannian 3-symmetric spaces (see also Wolf and Gray [8]). Moreover compact Riemannian 4-symmetric spaces is classified by Jeménez [4].

The classification of 3-symmetric spaces $(G/H, \sigma)$ was made by classifying involutions τ satisfying $\tau \sigma = \sigma \tau$. Similarly, involutions τ of a 4-symmetric space $(G/H, \sigma)$ satisfying $\tau \sigma = \sigma \tau$ are important for the classification of 4-symmetric spaces. Let \mathfrak{g} (or Lie(G)) denote the Lie algebra of G and \mathfrak{g}^{σ} the fixed point set of σ in \mathfrak{g} . In two previous papers [5] and [6], we classified such involutions τ when \mathfrak{g} is a compact simple Lie algebra of exceptional type and the dimension of the center of \mathfrak{g}^{σ} is at most one. In this paper we classify the non-compact 4-symmetric spaces satisfying some certain conditions.

Let $(G/H, \sigma)$ be a 4-symmetric space such that G is a simple Lie group. Let \mathfrak{g} and \mathfrak{h} denote the Lie algebra of G and H, respectively. The pair $(\mathfrak{g}, \mathfrak{h})$ (or (\mathfrak{g}, σ)) is called a 4-symmetric pair. Note that, since the fixed point set \mathfrak{g}^{σ} is equal to $\mathfrak{g}^{\sigma^{-1}}$, the 4-symmetric pair (\mathfrak{g}, σ) is equal to $(\mathfrak{g}, \sigma^{-1})$.

Suppose that \mathfrak{g} is of non-compact type. Let θ be a Cartan involution of \mathfrak{g} such that $\theta\sigma = \sigma\theta$ and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ the Cartan decomposition. Let \mathfrak{g}^* and \mathfrak{h}^* denote the compact duals of \mathfrak{g} and $\mathfrak{h} := \mathfrak{g}^{\sigma}$, respectively, that is, $\mathfrak{g}^* = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{p}$ and $\mathfrak{h}^* = \mathfrak{g}^{\sigma} \cap \mathfrak{k} \oplus \sqrt{-1}(\mathfrak{g}^{\sigma} \cap \mathfrak{p})$. Then σ induces an

 $^{2020 \ {\}rm Mathematics \ Subject \ Classification. \ Primary \ 53C30; \ Secondary \ 17B20, \ 53C35.}$

automorphism σ^* on \mathfrak{g}^* , and $(\mathfrak{g}^*, \sigma^*)$ becomes a compact 4-symmetric pair. Let $\mathfrak{z}((\mathfrak{g}^*)^{\sigma^*})$ denote the center of $(\mathfrak{g}^*)^{\sigma^*}$. Suppose that $\dim(\mathfrak{z}((\mathfrak{g}^*)^{\sigma^*}) \leq 1$. Then according to [5] and [6] if there exists an automorphism τ^* of \mathfrak{g}^* such that $\tau^*((\mathfrak{g}^*)^{\sigma^*}) = (\mathfrak{g}^*)^{\sigma^*}$, then $\tau^*\sigma^* = \sigma^*\tau^*$ or $\tau^*\sigma^* = (\sigma^*)^{-1}\tau^*$. From the above, it is natural to define an isomorphism between the two triplets $(\mathfrak{g}_1, \sigma_1, \theta_1)$ and $(\mathfrak{g}_2, \sigma_2, \theta_2)$, where \mathfrak{g}_i is a simple Lie algebra over \mathbb{R} , σ_i is an order four automorphism on \mathfrak{g}_i , and θ_i is an involution that commutes with $\sigma_i(i=1,2)$, as the existance of an isomorphism $\mu: \mathfrak{g}_1 \to \mathfrak{g}_2$ such that $\mu(\mathfrak{g}_1^{\pm \theta_1}) = \mathfrak{g}_2^{\pm \theta_2}$ and $\mu(\mathfrak{g}_1^{\sigma_1}) = \mathfrak{g}_2^{\sigma_2}$. In this paper, we classify non-compact 4-symmetric pairs (\mathfrak{g}, σ) of exceptional type when $\dim \mathfrak{z}(\mathfrak{g}^{\sigma}) \leq 1$ under this isomorphism using the involution on compact 4-symmetric pairs investigated in [5] and [6].

At first, we shall prove that there exists a Cartan involution θ of G satisfying $\theta \sigma = \sigma \theta$. This allows us to consider the compact dual \mathfrak{g}^* of Lie(G) with respect to this Cartan involution θ . These automorphisms θ and σ of Lie(G) induce automorphisms θ^* and σ^* of \mathfrak{g}^* , respectively, which satisfy $(\theta^*)^2 = \text{Id} = (\sigma^*)^4$ and $\theta^*\sigma^* = \sigma^*\theta^*$. The non-compact dual of a symmetric pair $(\mathfrak{g}^*, \theta^*)$ induce non-compact 4-symmetric pairs. This construction method runs out of non-compact 4-symmetric spaces. Therefore the existance of such a Cartan involution is most impotant. If \mathfrak{g}^* is of an exceptional type, then these θ^* are classified by authors under the certain conditions ([5], [6]).

The organization of this paper is as follows:

In Section 2, we recall the notions of root systems needed for the remaining part of this paper and some results on inner automorphisms of order k ($k \le 4$) of a semisimple Lie algebra.

In Section 3, let \mathfrak{g} be a non-compact simple Lie algebra over \mathbb{R} with an automorphism of order k. We prove that there is a maximal compact subgroup of $\operatorname{Aut}(\mathfrak{g})$ containing a compact subgroup $\{\operatorname{Id}, \sigma, \sigma^2, \dots, \sigma^{k-1}\}$ of $\operatorname{Aut}(\mathfrak{g})$ (Lemma 3.2). Using the Lie algebra of this maximal compact subgroup, we construct a Cartan decomposition and induced Cartan involution which is commute with σ . As mentioned above, this is key Proposition (Proposition 3.4).

In Section 4, we investigate some properties of automorphisms of the compact dual of non-compact 4-symmetric triple. These considerations shows that the compact dual constitutes a compact 4-symmetric triple.

In Section 5, we define the isomorphism between two triples $(\mathfrak{g}^*, \sigma^*, \theta^*)$ and describe the relationship between the isomorphic of two compact(resp. non-compact) triples and the isomorphic of their non-compact(resp. compact) duals. Moreover, if the dimension of the center of $(\mathfrak{g}^*)^{\sigma^*}$ is 0 or 1 and σ^* is an inner automorphism of \mathfrak{g}^* , then we prove that the non-compact triples are exhausted from all conjugate classes of involutions on \mathfrak{g}^* under $\operatorname{Aut}_{(\mathfrak{g}^*)^{\sigma^*}}(\mathfrak{g}^*)$ which commutes with σ^*

In Section 6, let $(G/H, \sigma)$ be a exceptional non-compact 4-symmetric space and suppose that the complexification of Lie(H) contains a Cartan subalgebra of the complexification of Lie(G) and the dimension of the center of Lie(H) is 0 or 1. Then using [5] and [6], we classify the exceptional non-compact 4-symmetric spaces $(G/H, \sigma)$ that satisfy these conditions under the isomorphism defined in Section 5.

2 Preliminaries.

Let \mathfrak{g}^* and \mathfrak{t}^* be a compact semisimple Lie algebra and a maximal abelian subalgebra of \mathfrak{g}^* , respectively. Let $\mathfrak{g}_{\mathbb{C}}^*$ and $\mathfrak{t}_{\mathbb{C}}^*$ denote the complexifications of \mathfrak{g}^* and \mathfrak{t}^* , respectively. Let $\Delta(\mathfrak{g}_{\mathbb{C}}^*,\mathfrak{t}_{\mathbb{C}}^*)$ denote the root system of $\mathfrak{g}_{\mathbb{C}}^*$ with respect to $\mathfrak{t}_{\mathbb{C}}^*$, $\Pi(\mathfrak{g}_{\mathbb{C}}^*,\mathfrak{t}_{\mathbb{C}}^*) = \{\alpha_1,\ldots,\alpha_n\}$ the set of fundamental roots of $\Delta(\mathfrak{g}_{\mathbb{C}}^*,\mathfrak{t}_{\mathbb{C}}^*)$ with respect to a lexicographic order and

(2.1)
$$\mathfrak{g}_{\alpha}^* = \{ X \in \mathfrak{g}_{\mathbb{C}}^* ; [H, X] = \alpha(H)X \text{ for any } H \in \mathfrak{t}_{\mathbb{C}}^* \}.$$

Since the Killing form B is non-degenerate, we can define $H_{\alpha} \in \mathfrak{t}_{\mathbb{C}}^*(\alpha \in \Delta(\mathfrak{g}_{\mathbb{C}}^*, \mathfrak{t}_{\mathbb{C}}^*))$ by $\alpha(H) = B(H_{\alpha}, H)$ for any $H \in \mathfrak{t}_{\mathbb{C}}^*$. As in Helgason [3], we take the Weyl basis $\{E_{\alpha} \in \mathfrak{g}_{\alpha}^* : \alpha \in \Delta(\mathfrak{g}_{\mathbb{C}}^*, \mathfrak{t}_{\mathbb{C}}^*)\}$ of $\mathfrak{g}_{\mathbb{C}}^*$ so that

$$\begin{split} [E_{\alpha}, E_{-\alpha}] &= H_{\alpha}, \\ [E_{\alpha}, E_{\beta}] &= N_{\alpha, \beta} E_{\alpha + \beta}, \quad N_{\alpha, \beta} \in \mathbb{R}, \\ N_{\alpha, \beta} &= -N_{-\alpha, -\beta}, \\ A_{\alpha} &= E_{\alpha} - E_{-\alpha}, \quad B_{\alpha} = \sqrt{-1}(E_{\alpha} + E_{-\alpha}) \in \mathfrak{g}^*. \end{split}$$

Let Δ^+ denote the set of positive roots of $\Delta(\mathfrak{g}_{\mathbb{C}}^*, \mathfrak{t}_{\mathbb{C}}^*)$ with respect to the order. As is well-known, a Lie algebra

$$\mathfrak{g}^* = \mathfrak{h}^* + \sum_{\alpha \in \Lambda^+} (\mathbb{R}A_\alpha + \mathbb{R}B_\alpha)$$

is a compact real form of $\mathfrak{g}_{\mathbb{C}}^*$. Here $\mathfrak{h}^* = \sum_{\alpha \in \Delta^+} \mathbb{R} \sqrt{-1} H_{\alpha}$. In particular let

$$\mathfrak{su}_{\alpha}(2) := \mathbb{R}\sqrt{-1}H_{\alpha} + \mathbb{R}A_{\alpha} + \mathbb{R}B_{\alpha} \cong \mathfrak{su}(2).$$

Let t_{α} denote the root reflections for $\alpha \in \Delta(\mathfrak{g}_{\mathbb{C}}^*, \mathfrak{t}_{\mathbb{C}}^*)$ and \tilde{t}_{α} an inner automorphism of \mathfrak{g}^* such that $\tilde{t}_{\alpha}|_{\mathfrak{t}^*} = t_{\alpha}$.

We define $K_j \in \mathfrak{t}_{\mathbb{C}}^*(j=1,\ldots,l)$ by

$$\alpha_i(K_i) = \delta_{ij}, \quad i, j = 1, \dots, l,$$

and denote the highest root δ by

$$\delta = \sum_{j=1}^{l} m_j \alpha_j, \quad m_j \in \mathbb{Z}.$$

3 The Cartan involution which commute to an automorphism of finite order.

Let \mathfrak{g} be a *n*-dimentional non-compact simple Lie algebra over \mathbb{R} . Let θ be a Cartan involution of \mathfrak{g} and

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p},\quad \theta|_{\mathfrak{k}}=\mathrm{Id}|_{\mathfrak{k}},\quad \theta|_{\mathfrak{p}}=-\mathrm{Id}|_{\mathfrak{p}}$$

the corresponding Cartan decomposition. Let σ be an automorphism of order k on \mathfrak{g} , i.e., $\sigma^k = \mathrm{Id}, \sigma^i \neq \mathrm{Id}(i=1,2,\ldots,k-1)$. Then $\Gamma = \{\mathrm{Id},\sigma,\sigma^2,\ldots,\sigma^{k-1}\}$ is a compact subgroup of $\mathrm{Aut}(\mathfrak{g})$.

Let $\tilde{\theta}$ be a Cartan involution of $GL(n,\mathbb{R})$. From 1.1 of [1] any Cartan involutions of $Aut(\mathfrak{g})$ are induced from $\tilde{\theta}$. For simplicity, these Cartan involutions of $Aut(\mathfrak{g})$ are also represented by $\tilde{\theta}$. Since $ad(\mathfrak{g}) \cong \mathfrak{g}$ and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, we have $ad(\mathfrak{g}) = ad(\mathfrak{k}) \oplus ad(\mathfrak{p})$.

Let
$$L=(\operatorname{Aut}(\mathfrak{g}))^{\tilde{\theta}}(=\{\varphi\in\operatorname{Aut}(\mathfrak{g});\tilde{\theta}(\varphi)=\varphi\}).$$

Lemma 3.1 ([1]). (i) L is a maximal compact subgroup of $Aut(\mathfrak{g})$.

- (ii) $Lie(L) = ad(\mathfrak{k})$.
- (iii) Every compact subgroup in $Aut(\mathfrak{g})$ is conjugate to a subgroup in L.

Lemma 3.2. There exists a maximal compact subgroup of $Aut(\mathfrak{g})$ containing Γ .

Proof. Since $\operatorname{Aut}(\mathfrak{g})$ is a closed subgroup of $\operatorname{GL}(n,\mathbb{R})$ and represented by an algebraic equation, $\operatorname{Aut}(\mathfrak{g})$ is a reductive algebraic subgroup of $\operatorname{GL}(n,\mathbb{R})$. Note that $\operatorname{Lie}(\operatorname{Aut}(\mathfrak{g})) = \operatorname{ad}(\mathfrak{g})$. Since \mathfrak{g} is simple, the center of \mathfrak{g} is $\{0\}$, and hence we have $\operatorname{ad}(\mathfrak{g}) \cong \mathfrak{g}$.

Now, from Lemma 3.1(iii) Γ is conjugate to some subgroup Γ' of L under $\tau \in \operatorname{Ad}(\exp(\operatorname{ad}(\mathfrak{p})))$, that is, $\Gamma' = \tau \Gamma \tau^{-1}$. From Lemma 3.1(i) $\tau^{-1}L\tau$ is a maximal compact subgroup of $\operatorname{Aut}(\mathfrak{g})$ containing Γ .

Let \tilde{B} be a maximal compact subgroup of $\operatorname{Aut}(\mathfrak{g})$ containing Γ . Then there exists $\tau \in \operatorname{Aut}(\mathfrak{g})$ such that $\tilde{B} = \tau^{-1}L\tau$, which together with Lemma 3.1(ii) implies that $\operatorname{Lie}(\tilde{B}) \cong \operatorname{Lie}(L) = \operatorname{ad}(\mathfrak{k})$. Let $\tilde{\mathfrak{b}} = \operatorname{Lie}(\tilde{B})$, $\tilde{\mathfrak{b}} = \operatorname{ad}(\mathfrak{b})$ and $\sigma \in \Gamma$. Since $\Gamma \subset \tilde{B}$, we have

$$\sigma \tilde{B} \sigma^{-1} \subset \tilde{B} \cdot \tilde{B} \cdot \tilde{B} = \tilde{B}.$$

In particular, if \tilde{B}_o is the identity component of \tilde{B} , then we have

$$\sigma \tilde{B}_o \sigma^{-1} = \tilde{B}_o$$
.

 \tilde{B}_o is a closed set in a compact set \tilde{B} so \tilde{B}_o is a compact Lie group.

Lemma 3.3. $\sigma(\mathfrak{b}) = \mathfrak{b}$.

Proof. If $Y \in \mathfrak{b}$, then $\exp t(\operatorname{ad} Y) \in \tilde{B}_o$ and for any $t \in \mathbb{R}$

$$\exp(t\sigma(\operatorname{ad} Y)\sigma^{-1}) = \sigma(\exp t(\operatorname{ad} Y))\sigma^{-1} \in \sigma \tilde{B}_o \sigma^{-1} = \tilde{B}_o.$$

It follows that

$$\operatorname{ad}(\sigma(Y)) = \frac{d}{dt}\Big|_{t=0} \exp t(\operatorname{ad}(\sigma(Y))) \in \operatorname{Lie}(\tilde{B}_o) = \tilde{\mathfrak{b}}.$$

Thus we have $\sigma(\mathfrak{b}) \subset \mathfrak{b}$. Therefore $\sigma(\mathfrak{b}) = \mathfrak{b}$.

Proposition 3.4. Let \mathfrak{g} be an non-compact simple Lie algebra over \mathbb{R} with an automorphism σ of order k and \mathfrak{g}^{σ} the fixed point set of σ in \mathfrak{g} . Then

- (i) There exists a Cartan involution that commutes with σ .
- (ii) If θ_1 and θ_2 are Cartan involutions preserving \mathfrak{g}^{σ} , then there exists an automorphism τ of \mathfrak{g} preserving \mathfrak{g}^{σ} such that $\tau\theta_1\tau^{-1}=\theta_2$.

Proof. (i) Let $\mathfrak b$ be constructed above. Since $\mathfrak b$ is a maximal compact subalgebra, there is a Cartan decomposition

$$\mathfrak{g}=\mathfrak{b}\oplus\mathfrak{b}^\perp$$

where \mathfrak{b}^{\perp} denote the orthogonal complement with respect to the Killing form B. Let ω be the corresponding Cartan involution. From Lemma 3.3 for any $X \in \mathfrak{b}$ there exists $X' \in \mathfrak{b}$ such that $\sigma(X') = X$. So if $Y \in \mathfrak{b}^{\perp}$, then we have $B(X, \sigma(Y)) = 0$. It follows that $\sigma(\mathfrak{b}^{\perp}) \subset \mathfrak{b}^{\perp}$. If $X \in \mathfrak{b}^{\perp}$, then since $\mathfrak{b}^{\perp} \subset \mathfrak{g} = \sigma(\mathfrak{g})$, there exists $X' \in \mathfrak{g}$ such that $X = \sigma(X')$. For any $Y \in \mathfrak{b}$, from Lemma 3.3 we have $\sigma(Y) \in \mathfrak{b}$ so $B(Y, X') = B(\sigma(Y), X) = 0$. Thus $\mathfrak{b}^{\perp} \subset \sigma(\mathfrak{b}^{\perp})$ and therefore $\mathfrak{b}^{\perp} = \sigma(\mathfrak{b}^{\perp})$.

Now, if $X = X_{\mathfrak{b}} + X_{\mathfrak{b}^{\perp}} \in \mathfrak{g} \ (X_{\mathfrak{b}} \in \mathfrak{b}, X_{\mathfrak{b}^{\perp}} \in \mathfrak{b}^{\perp})$, then

$$\sigma\omega(X_{\mathfrak{b}} + X_{\mathfrak{b}^{\perp}}) = \sigma(X_{\mathfrak{b}}) - \sigma(X_{\mathfrak{b}^{\perp}}).$$

Because of $\sigma(\mathfrak{b}) = \mathfrak{b}$ and $\sigma(\mathfrak{b}^{\perp}) = \mathfrak{b}^{\perp}$, we have

$$\omega\sigma(X_{\mathfrak{b}}+X_{\mathfrak{b}^{\perp}})=\sigma(X_{\mathfrak{b}})-\sigma(X_{\mathfrak{b}^{\perp}}).$$

Consequently, we have $\sigma\omega = \omega\sigma$.

The statement (ii) is proved in the same way as in the proofs of Lemma 3 and Lemma 4 in [7] as follows. It is shown as in [3] that $\theta_2\theta_1$ is a self-adjoint transformation of \mathfrak{g} with respect to positive definite inner product $B_{\theta_1}(B_{\theta_1}(X,Y) = -B(X,\theta_1(Y)))$ for $X,Y \in \mathfrak{g}$. Since \mathfrak{g}^{σ} is θ_1 -stable and θ_2 -stable, we can take an orthonormal basis $\{X_1,\dots,X_n\}$ such that $\{X_1,\dots,X_m\}$ is a basis of \mathfrak{g}^{σ} and $\theta_2\theta_1$ is represented by a diagonal matrix with respect to this basis. Put $P = (\theta_2\theta_1)^2$ and define $P^t(t \in \mathbb{R})$ as in [3]. Then $P(\mathfrak{g}^{\sigma}) = \mathfrak{g}^{\sigma}$ so $P^t(\mathfrak{g}^{\sigma}) = \mathfrak{g}^{\sigma}$. Put $\tau = P^{1/4}$. Then it is easy to see that $\tau\theta_1\tau^{-1} = \theta_2$. Thus, τ is an automorphism of \mathfrak{g} preserving \mathfrak{g}^{σ} .

4 Compact dual.

Let \mathfrak{g} be a non-compact simple Lie algebra over \mathbb{R} with an automorphism σ of order four. By Proposition 3.4 there exists a Cartan involution θ of \mathfrak{g} such that $\theta \sigma = \sigma \theta$. Let

$$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$$

be the corresponding Cartan decomposition of g.

Let \mathfrak{m} be the orthogonal complement of $\mathfrak{h} := \mathfrak{g}^{\sigma}$ in \mathfrak{g} with respect to the Killing form, that is,

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}.$$

Then we have

(4.1)
$$\theta(\mathfrak{h}) = \mathfrak{h}, \ \theta(\mathfrak{m}) = \mathfrak{m}, \ \sigma(\mathfrak{k}) = \mathfrak{k}, \ \sigma(\mathfrak{p}) = \mathfrak{p}.$$

In fact, Since $\theta \sigma = \sigma \theta$, it is obvious that $\theta(\mathfrak{h}) = \mathfrak{h}$, $\sigma(\mathfrak{k}) = \mathfrak{k}$ and $\sigma(\mathfrak{p}) = \mathfrak{p}$. Similarly as the proof of Lemma 3.3, we obtain $\theta(\mathfrak{m}) = \mathfrak{m}$.

Lemma 4.1. The following decompositions are direct:

$$\begin{split} \mathfrak{h} &= (\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{h} \cap \mathfrak{p}), \ \mathfrak{m} = (\mathfrak{m} \cap \mathfrak{k}) \oplus (\mathfrak{m} \cap \mathfrak{p}), \\ \mathfrak{k} &= (\mathfrak{k} \cap \mathfrak{h}) \oplus (\mathfrak{k} \cap \mathfrak{m}), \ \mathfrak{p} = (\mathfrak{p} \cap \mathfrak{h}) \oplus (\mathfrak{p} \cap \mathfrak{m}). \end{split}$$

Proof. If $H_{\mathfrak{k}} + H_{\mathfrak{p}} \in \mathfrak{h}$ $(H_{\mathfrak{k}} \in \mathfrak{k}, H_{\mathfrak{p}} \in \mathfrak{p})$, then we have $H_{\mathfrak{k}} + H_{\mathfrak{p}} = \sigma(H_{\mathfrak{k}}) + \sigma(H_{\mathfrak{p}})$. It follows from (4.1) that $\sigma(H_{\mathfrak{k}}) \in \mathfrak{k}$ and $\sigma(H_{\mathfrak{p}}) \in \mathfrak{p}$ so $H_{\mathfrak{k}}, H_{\mathfrak{p}} \in \mathfrak{h}$. Thus we have a direct decomposition

$$\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{h} \cap \mathfrak{p}).$$

If $X_{\mathfrak{k}} + X_{\mathfrak{p}} \in \mathfrak{m}$ $(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}} \in \mathfrak{p})$, then we have $\mathfrak{m} \ni \theta(X_{\mathfrak{k}} + X_{\mathfrak{p}}) = X_{\mathfrak{k}} - X_{\mathfrak{p}}$. Thus we have $2X_{\mathfrak{k}} = (X_{\mathfrak{k}} - X_{\mathfrak{p}}) + (X_{\mathfrak{k}} + X_{\mathfrak{p}}) \in \mathfrak{m}$ so $X_{\mathfrak{k}} \in \mathfrak{m}$. Therefore we obtain

$$\mathfrak{m}=(\mathfrak{m}\cap\mathfrak{k})\oplus(\mathfrak{m}\cap\mathfrak{p}).$$

If $X_{\mathfrak{h}} + X_{\mathfrak{m}} \in \mathfrak{k}$ $(X_{\mathfrak{h}} \in \mathfrak{h}, X_{\mathfrak{m}} \in \mathfrak{m})$, then we have $X_{\mathfrak{h}} + X_{\mathfrak{m}} = \theta(X_{\mathfrak{h}} + X_{\mathfrak{m}}) = \theta(X_{\mathfrak{h}}) + \theta(X_{\mathfrak{m}})$. It follows from (4.1) that $\theta(X_{\mathfrak{h}}) = X_{\mathfrak{h}}$ and $\theta(X_{\mathfrak{m}}) = X_{\mathfrak{m}}$ so $X_{\mathfrak{h}} \in \mathfrak{h} \cap \mathfrak{k}$ and $X_{\mathfrak{m}} \in \mathfrak{m} \cap \mathfrak{k}$. Therefore we get

$$\mathfrak{k} = (\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{m} \cap \mathfrak{k}).$$

Similarly as above, we have $\mathfrak{p} = (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{m} \cap \mathfrak{p})$.

Let \mathfrak{g}^* be the compact dual of \mathfrak{g} , that is,

$$\mathfrak{g}^* = \mathfrak{k} \oplus \mathfrak{p}^* \ (\mathfrak{p}^* = \sqrt{-1}\mathfrak{p}),$$

and τ an automorphism of \mathfrak{g} such that $\tau\theta = \theta\tau$. Then we have $\tau(\mathfrak{k}) = \mathfrak{k}$ and $\tau(\mathfrak{p}) = \mathfrak{p}$. Thus we can define the mapping $\tau^* : \mathfrak{g}^* \to \mathfrak{g}^*$ by $\tau^*(X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}}) = \tau(X_{\mathfrak{k}}) + \sqrt{-1}\tau(X_{\mathfrak{p}})(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}} \in \mathfrak{p})$.

Lemma 4.2. τ^* is an automorphism of \mathfrak{g}^* . If the order of τ is k, then the order of τ^* is k. If $\tau^k \neq \mathrm{Id}$, then $(\tau^*)^k \neq \mathrm{Id}$.

Proof. It follows from the definition of the mapping τ that τ^* preserve the bracket so $\tau^* \in \operatorname{Aut}(\mathfrak{g}^*)$. Since $\tau(\mathfrak{g}) = \mathfrak{g}$, we have $(\tau^*)^k (X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}}) = \tau^k (X_{\mathfrak{k}}) + \sqrt{-1}\tau^k (X_{\mathfrak{p}})$. Thus the second assertion is trivial.

We call the automorphism τ^* of \mathfrak{g}^* defined in Lemma 4.2 the automorphism of \mathfrak{g}^* induced by τ .

Lemma 4.3. $\sigma^*\theta^* = \theta^*\sigma^*$.

Proof. Since
$$\theta(\mathfrak{k}) = \mathfrak{k}$$
, $\theta(\mathfrak{p}) = \mathfrak{p}$ and (4.1), if $X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}} \in \mathfrak{g}^*$ $(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}} \in \mathfrak{p})$, then we have $\sigma^*\theta^*(X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}}) = \sigma(X_{\mathfrak{k}}) - \sqrt{-1}\sigma(X_{\mathfrak{p}}) = \theta^*\sigma^*(X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}})$.

Now, we have a direct decomposition

$$(\mathfrak{g}^*)^{\sigma^*} = (\mathfrak{h} \cap \mathfrak{k}) \oplus \sqrt{-1}(\mathfrak{h} \cap \mathfrak{p}).$$

Indeed, if $X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}} \in (\mathfrak{g}^*)^{\sigma^*}(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}} \in \mathfrak{p})$, then we have $X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}} = \sigma^*(X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}}) = \sigma(X_{\mathfrak{k}}) + \sqrt{-1}\sigma(X_{\mathfrak{p}})$. From (4.1) we have $\sigma(X_{\mathfrak{k}}) = X_{\mathfrak{k}}$ and $\sigma(X_{\mathfrak{p}}) = X_{\mathfrak{p}}$, and hence $X_{\mathfrak{k}}, X_{\mathfrak{p}} \in \mathfrak{h}$. It follows that $(\mathfrak{g}^*)^{\sigma^*} \subset (\mathfrak{h} \cap \mathfrak{k}) \oplus \sqrt{-1}(\mathfrak{h} \cap \mathfrak{p})$. On the other hand, by the definition of the mapping σ^* it is clear that $(\mathfrak{g}^*)^{\sigma^*} \supset (\mathfrak{h} \cap \mathfrak{k}) \oplus \sqrt{-1}(\mathfrak{h} \cap \mathfrak{p})$.

Let $\mathfrak{g}_i(i=1,2)$ be a non-compact simple Lie algebra over \mathbb{R} with an automorphism σ_i of order four and θ_i a Cartan involution of \mathfrak{g}_i such that $\sigma_i\theta_i=\theta_i\sigma_i$. Let \mathfrak{k}_i and \mathfrak{p}_i denote eigenspaces of θ_i for the eigenvalues +1 and -1, respectively. Let \mathfrak{g}_1^* and \mathfrak{g}_2^* be the compact dual of $\mathfrak{g}_1=\mathfrak{k}_1\oplus\mathfrak{p}_1$ and $\mathfrak{g}_2=\mathfrak{k}_2\oplus\mathfrak{p}_2$, respectively, that is, $\mathfrak{g}_1^*=\mathfrak{k}_1\oplus\mathfrak{p}_1^*(\mathfrak{p}_1^*=\sqrt{-1}\mathfrak{p}_1)$, $\mathfrak{g}_2^*=\mathfrak{k}_2\oplus\mathfrak{p}_2^*(\mathfrak{p}_2^*=\sqrt{-1}\mathfrak{p}_2)$. Suppose that there is an isomorphism $\mu:\mathfrak{g}_1\to\mathfrak{g}_2$ satisfying $\mu(\mathfrak{k}_1)=\mathfrak{k}_2, \mu(\mathfrak{p}_1)=\mathfrak{p}_2$ and $\mu((\mathfrak{g}_1)^{\sigma_1})=(\mathfrak{g}_2)^{\sigma_2}$. Then, we can define the mapping $\mu^*:\mathfrak{g}_1^*\to\mathfrak{g}_2^*$ by $\mu^*(X_{\mathfrak{k}_1}+\sqrt{-1}X_{\mathfrak{p}_1})=\mu(X_{\mathfrak{k}_1})+\sqrt{-1}\mu(X_{\mathfrak{p}_1})$ $(X_{\mathfrak{k}_1}\in\mathfrak{k}_1,X_{\mathfrak{p}_1}\in\mathfrak{p}_1)$. It is obvious that $\mu^*(\mathfrak{k}_1)=\mathfrak{k}_2$ and $\mu^*(\mathfrak{p}_1^*)=\mathfrak{p}_2^*$. Moreover, it is easy to see that

(4.3)
$$\mu^*([X_{\mathfrak{k}_1} + \sqrt{-1}X_{\mathfrak{p}_1}, Y_{\mathfrak{k}_1} + \sqrt{-1}Y_{\mathfrak{p}_1}]) = [\mu^*(X_{\mathfrak{k}_1} + \sqrt{-1}X_{\mathfrak{p}_1}), \mu^*(Y_{\mathfrak{k}_1} + \sqrt{-1}Y_{\mathfrak{p}_1})],$$

for $X_{\mathfrak{k}_1}, Y_{\mathfrak{k}_1} \in \mathfrak{k}_1, X_{\mathfrak{p}_1}, Y_{\mathfrak{p}_1} \in \mathfrak{p}_1$. Thus μ^* is an isomorphism of \mathfrak{g}_1^* into \mathfrak{g}_2^* . Let $\sigma_i^*(i=1,2)$ be the automorphism of \mathfrak{g}_i^* induced by σ_i . From Lemma 4.1 and (4.2) and the definition of the mapping μ we have

(4.4)
$$\mu^*((\mathfrak{g}_1^*)^{\sigma_1^*}) = \mu((\mathfrak{g}_1)^{\sigma_1} \cap \mathfrak{k}_1) \oplus \sqrt{-1}\mu((\mathfrak{g}_1)^{\sigma_1} \cap \mathfrak{p}_1)$$
$$= ((\mathfrak{g}_2)^{\sigma_2} \cap \mathfrak{k}_2) \oplus \sqrt{-1}((\mathfrak{g}_2)^{\sigma_2} \cap \mathfrak{p}_2)$$
$$= (\mathfrak{g}_2^*)^{\sigma_2^*}.$$

5 Isomorphism

We define the isomorphic between two compact simple Lie algebras with order two and four automorphisms. Let \mathfrak{g}^* be a compact simple Lie algebra over \mathbb{R} with an automorphism σ^* of order four and θ^* an involution of \mathfrak{g}^* such that $\sigma^*\theta^* = \theta^*\sigma^*$. Let \mathfrak{k} and \mathfrak{p}^* denote eigenspaces of θ^* for the eigenvalues +1 and -1, respectively. In this section we denote it by $(\mathfrak{g}^*, \sigma^*, \theta^*)$ simply.

Two triples $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ and $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$ are called *isomorphic* if there exists an isomorphism $\mu^* : \mathfrak{g}_1^* \to \mathfrak{g}_2^*$ satisfying $\mu^*(\mathfrak{k}_1) = \mathfrak{k}_2$, $\mu^*(\mathfrak{p}_1^*) = \mathfrak{p}_2^*$ and $\mu^*((\mathfrak{g}_1^*)^{\sigma_1^*}) = (\mathfrak{g}_2^*)^{\sigma_2^*}$.

Remark 5.1. As stated in Section 1, for any triple $(\mathfrak{g}^*, \sigma^*, \theta^*)$ the automorphism $(\sigma^*)^{-1}$ leaves $(\mathfrak{g}^*)^{\sigma^*}$ invariant. Thus $(\mathfrak{g}^*, (\sigma^*)^{-1}, \theta^*)$ will be identified with $(\mathfrak{g}^*, \sigma^*, \theta^*)$.

Suppose that the triple $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ is isomorphic to $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$ and the corresponding isomorphism is μ^* .

Let \mathfrak{g}_1 and \mathfrak{g}_2 be the non-compact duals of $\mathfrak{g}_1^* = \mathfrak{k}_1 \oplus \mathfrak{p}_1^*$ and $\mathfrak{g}_2^* = \mathfrak{k}_2 \oplus \mathfrak{p}_2^*$, respectively, that is, $\mathfrak{g}_1 = \mathfrak{k}_1 \oplus \mathfrak{p}_1(\mathfrak{p}_1 = \sqrt{-1}\mathfrak{p}_1^*)$, $\mathfrak{g}_2 = \mathfrak{k}_2 \oplus \mathfrak{p}_2(\mathfrak{p}_2 = \sqrt{-1}\mathfrak{p}_2^*)$. Since $\mu^*(\mathfrak{k}_1) = \mathfrak{k}_2$ and $\mu^*(\mathfrak{p}_1^*) = \mathfrak{p}_2^*$, we can define the mapping $\mu: \mathfrak{g}_1 \to \mathfrak{g}_2$ by $\mu(X_{\mathfrak{k}_1} + \sqrt{-1}X_{\mathfrak{p}_1^*}) = \mu^*(X_{\mathfrak{k}_1}) + \sqrt{-1}\mu^*(X_{\mathfrak{p}_1^*})$ ($X_{\mathfrak{k}_1} \in \mathfrak{k}_1, X_{\mathfrak{p}_1^*} \in \mathfrak{p}_1^*$). Let $\sigma_i(i=1,2)$ be the automorphism of \mathfrak{g}_i induced by σ_i^* . Then by an argument similar to that in Section 4 μ is an isomorphism of \mathfrak{g}_1 into \mathfrak{g}_2 such that $\mu(\mathfrak{k}_1) = \mathfrak{k}_2, \mu(\mathfrak{p}_1) = \mathfrak{p}_2$ and $\mu((\mathfrak{g}_1)^{\sigma_1}) = (\mathfrak{g}_2)^{\sigma_2}$.

The following Lemma is a compact version of Lemma 4.2. The proof is also similar.

Lemma 5.2. Let \mathfrak{g}^* be a compact simple Lie algebra, θ^* an involution of \mathfrak{g}^* and $\mathfrak{g}^* = \mathfrak{k} \oplus \mathfrak{p}^*$ the corresponding direct decomposition of \mathfrak{g}^* . Let \mathfrak{g} denote the non-compact dual of \mathfrak{g}^* . Then for each automorphism τ^* of \mathfrak{g}^* such that $\tau^*\theta^* = \theta^*\tau^*$, the mapping $\tau : \mathfrak{g} \to \mathfrak{g}$ by $\tau(X_{\mathfrak{k}} + \sqrt{-1}X_{\mathfrak{p}^*}) = \tau^*(X_{\mathfrak{k}}) + \sqrt{-1}\tau^*(X_{\mathfrak{p}^*})(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}^*} \in \mathfrak{p}^*)$ is an automorphism of \mathfrak{g} . If the order of τ^* is k, then the order of τ is k. If $(\tau^*)^k \neq \mathrm{Id}$, then $\tau^k \neq \mathrm{Id}$.

We also call the automorphism τ of \mathfrak{g} defined in above Lemma the automorphism of \mathfrak{g} induced by τ^* .

From Lemma 5.2 σ_i^* and θ_i^* (i = 1, 2) induce $\sigma_i, \theta_i \in \text{Aut}(\mathfrak{g}_i)$, which satisfy $(\sigma_i)^4 = \text{Id} = (\theta_i)^2$.

Lemma 5.3. $\theta_2 = \mu \theta_1 \mu^{-1}, \ \theta_i \sigma_i = \sigma_i \theta_i \ (i = 1, 2).$

Proof. If we take $X_{\mathfrak{k}_i} \in \mathfrak{k}_i$ and $X_{\mathfrak{p}_i^*} \in \mathfrak{p}_i^*(i=1,2)$, then from (4.1) we find $\sigma^*(X_{\mathfrak{k}_i}) \in \mathfrak{k}_i$ and $\sigma^*(X_{\mathfrak{p}_i^*}) \in \mathfrak{p}_i^*$. Thus it is easy to see that $\theta_i \sigma_i(X_{\mathfrak{k}_i} + \sqrt{-1}X_{\mathfrak{p}_i^*}) = \sigma_i \theta_i(X_{\mathfrak{k}_i} + \sqrt{-1}X_{\mathfrak{p}_i^*})$. Since $\mu(\mathfrak{k}_1) = \mathfrak{k}_2$ and $\mu(\mathfrak{p}_1^*) = \mathfrak{p}_2^*$, we see that $\mu \theta_1 \mu^{-1}(X_{\mathfrak{k}_2} + \sqrt{-1}X_{\mathfrak{p}_2^*}) = X_{\mathfrak{k}_2} - \sqrt{-1}X_{\mathfrak{p}_2^*} = \theta_2(X_{\mathfrak{k}_2} + \sqrt{-1}X_{\mathfrak{p}_2^*})$.

Let \mathfrak{g} be a non-compact simple Lie algebra over \mathbb{R} with an automorphism σ of order four and θ a Cartan involution of \mathfrak{g} such that $\sigma\theta = \theta\sigma$. Let \mathfrak{k} and \mathfrak{p} denote eigenspaces of θ for the eigenvalues +1 and -1, respectively. In this section we denote it by $(\mathfrak{g}, \sigma, \theta)$ simply.

From the above consideration, two triples $(\mathfrak{g}_1, \sigma_1, \theta_1)$ and $(\mathfrak{g}_2, \sigma_2, \theta_2)$ are called *isomorphic* if there exists an isomorphism $\mu: \mathfrak{g}_1 \to \mathfrak{g}_2$ satisfying $\mu(\mathfrak{k}_1) = \mathfrak{k}_2, \ \mu(\mathfrak{p}_1) = \mathfrak{p}_2$ and $\mu((\mathfrak{g}_1)^{\sigma_1}) = (\mathfrak{g}_2)^{\sigma_2}$. The set of all isomorphisms $\mu: (\mathfrak{g}_1, \sigma_1, \theta_1) \to (\mathfrak{g}_2, \sigma_2, \theta_2)$ is denoted by $\mathrm{Isom}\{(\mathfrak{g}_1, \sigma_1, \theta_1), (\mathfrak{g}_2, \sigma_2, \theta_2)\}$.

Remark 5.4. By an argument similar to Remark 5.1 $(\mathfrak{g}, \sigma^{-1}, \theta)$ will be identified with $(\mathfrak{g}, \sigma, \theta)$.

From Lemma 5.2, Lemma 5.3 and the argument as above we have following.

Lemma 5.5. If $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ is isomorphic to $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$, then the non-compact duals of \mathfrak{g}_1^* and \mathfrak{g}_2^* , denoted as \mathfrak{g}_1 and \mathfrak{g}_2 , generate non-compact triples $(\mathfrak{g}_1, \sigma_1, \theta_1)$ and $(\mathfrak{g}_2, \sigma_2, \theta_2)$ and these triples are isomorphic.

Conversely, if two non-compact triples $(\mathfrak{g}_1, \sigma_1, \theta_1)$ and $(\mathfrak{g}_2, \sigma_2, \theta_2)$ are isomorphic, then using a similar argument to the one used to derive (4.3), (4.4), Lemma 5.2 and Lemma 5.3, we can construct two compact triples $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ and $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$ which are isomorphic, i.e., the following holds.

Lemma 5.6. If $(\mathfrak{g}_1, \sigma_1, \theta_1)$ is isomorphic to $(\mathfrak{g}_2, \sigma_2, \theta_2)$, then the compact duals of \mathfrak{g}_1 and \mathfrak{g}_2 , denoted as \mathfrak{g}_1^* and \mathfrak{g}_2^* , generate compact triples $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ and $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$ and these triples are isomorphic.

Remark 5.7. If a compact triple $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ is not isomorphic to a compact triple $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$, then by Lemma 5.6 the non-compact triple $(\mathfrak{g}_1, \sigma_1, \theta_1)$ is not isomorphic to the non-compact triple $(\mathfrak{g}_2, \sigma_2, \theta_2)$. Suppose that the non-compact 4-symmetric pair $(\mathfrak{g}_1, \sigma_1)$ is isomorphic to the non-compact 4-symmetric pair $(\mathfrak{g}_2, \sigma_2)$. Put $\mathfrak{h}_1 = (\mathfrak{g}_1)^{\sigma_1}$ and $\mathfrak{h}_2 = (\mathfrak{g}_2)^{\sigma_2}$. Then there exists an isomorphism $\varphi: \mathfrak{g}_1 \to \mathfrak{g}_2$ such that $\varphi(\mathfrak{h}_1) = \mathfrak{h}_2$. Since $(\mathfrak{g}_2)^{\varphi\sigma_1\varphi^{-1}} = \mathfrak{h}_2$, and Cartan involutions $\varphi\theta_1\varphi^{-1}$ and θ_2 preserve \mathfrak{h}_2 , it follows from Proposition 3.4 (ii) that there exists $\tau \in \operatorname{Aut}_{\mathfrak{h}_2}(\mathfrak{g}_2)$ such that $\tau(\varphi\theta_1\varphi^{-1})\tau^{-1} = \theta_2$. It is obvious that

$$(\tau\varphi)(\mathfrak{h}_1)=\mathfrak{h}_2,\quad (\tau\varphi)((\mathfrak{g}_1)^{\theta_1})=(\mathfrak{g}_2)^{\varphi\theta_1\varphi^{-1}}=(\mathfrak{g}_2)^{\tau(\varphi\theta_1\varphi^{-1})\tau^{-1}}=(\mathfrak{g}_2)^{\theta_2}.$$

Thus $(\mathfrak{g}_1, \sigma_1, \theta_1)$ is isomorphic to $(\mathfrak{g}_2, \sigma_2, \theta_2)$, which is contradiction. Consequently if a compact triple $(\mathfrak{g}_1^*, \sigma_1^*, \theta_1^*)$ is not isomorphic to a compact triple $(\mathfrak{g}_2^*, \sigma_2^*, \theta_2^*)$, then the non-compact 4-symmetric pair $(\mathfrak{g}_1, \sigma_1)$ is not isomorphic to the non-compact 4-symmetric pair $(\mathfrak{g}_2, \sigma_2)$.

6 Classification

Let \mathfrak{g} be a non-compact simple Lie algebra over \mathbb{R} with an automorphism σ of order four. Let \mathfrak{h} denote the fixed point set of σ in \mathfrak{g} . Suppose that $\mathfrak{h}_{\mathbb{C}}$ contains a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$. In this section we classify triples $(\mathfrak{g}, \sigma, \theta)$ under the isomorphism defined by Section 5 in the case where $\dim(\mathfrak{z}(\mathfrak{h})) \leq 1$.

Owing to Proposition 3.4, there exists a Cartan involution θ such that $\theta \sigma = \sigma \theta$. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the corresponding Cartan decomposition of \mathfrak{g} . Let \mathfrak{g}^* denote the compact dual of \mathfrak{g} and σ^* the automorphism of \mathfrak{g}^* induced by σ . Let \mathfrak{h}^* denote the compact dual of \mathfrak{h} . Then by (4.2) we have $\mathfrak{h}^* = (\mathfrak{g}^*)^{\sigma^*}$ and hence

$$\begin{array}{ll} \mathfrak{h}_{\mathbb{C}}^{*} & = & \mathfrak{h}^{*} \oplus \sqrt{-1} \mathfrak{h}^{*} \\ & = & \left((\mathfrak{h} \cap \mathfrak{k}) \oplus \sqrt{-1} (\mathfrak{h} \cap \mathfrak{p}) \right) \oplus \left(\sqrt{-1} (\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{h} \cap \mathfrak{p}) \right) \\ & = & \left((\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{h} \cap \mathfrak{p}) \right) \oplus \sqrt{-1} ((\mathfrak{h} \cap \mathfrak{k}) \oplus (\mathfrak{h} \cap \mathfrak{p})) \\ & = & \mathfrak{h} \oplus \sqrt{-1} \mathfrak{h} \\ & = & \mathfrak{h}_{\mathbb{C}}. \end{array}$$

Let \mathfrak{t}^* be a maximal abelian subalgebra of \mathfrak{h}^* . Since $\mathfrak{h}_{\mathbb{C}}$ contains a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$, the dimension of $\mathfrak{t}^*_{\mathbb{C}}$ is equal to the dimension of the maximal abelian subalgebra of \mathfrak{g}^* . Suppose that there exists a maximal abelian subalgebra $\tilde{\mathfrak{t}}$ of \mathfrak{g}^* such that $\mathfrak{t}^* \subseteq \tilde{\mathfrak{t}}$. If σ is an outer automorphism, then the dimension of $\mathfrak{t}^*_{\mathbb{C}}$ is less than the dimension of $\tilde{\mathfrak{t}}_{\mathbb{C}}$, which is a contradiction (cf. Theorem 5.15 of Chapter X of [3]). Thus \mathfrak{t}^* is a maximal abelian subalgebra

of \mathfrak{g}^* , so $\mathfrak{t}^* \subset \mathfrak{h}^* \subset \mathfrak{g}^*$. Therefore there exists $T \in \mathfrak{t}^*$ such that $\sigma^* = \operatorname{Ad}(\exp T)$ (cf. Proposition 5.3 of [3]).

Let $\operatorname{Int}(\mathfrak{g}^*)$ be the set of inner automorphisms of \mathfrak{g}^* . Since the dimension of the center of \mathfrak{h}^* is 0 or 1, $\sigma^* \in \operatorname{Int}(\mathfrak{g}^*)$, Lemma 2.4 and Remark 2.2 of [5], σ^* is conjugate within $\operatorname{Int}(\mathfrak{g}^*)$ to one of the following σ_0^* :

$$\sigma_0^* = \operatorname{Ad}(\exp \frac{\pi}{2} \sqrt{-1} K_i) (m_i = 3, 4) \text{ or } \operatorname{Ad}(\exp \frac{\pi}{2} \sqrt{-1} (K_i + K_j)) (m_i = m_j = 2),$$

where K_i and m_i is defined in Section 2, meaning that there exists $\tau_0^* \in \text{Int}(\mathfrak{g}^*)$ such that $\tau_0^*\sigma^*(\tau_0^*)^{-1} = \sigma_0^*$. Thus the triple $(\mathfrak{g}^*, \sigma^*, \theta^*)$ is isomorphic to the triple $(\mathfrak{g}^*, \sigma_0^*, \tau_0^*\theta^*(\tau_0^*)^{-1})$. Let $\text{Aut}_{\mathfrak{h}^*}(\mathfrak{g}^*)$ be the set of automorphisms of \mathfrak{g}^* preserving \mathfrak{h}^* and let $\mathfrak{h}_0 := (\mathfrak{g}^*)^{\sigma_0^*}$. According to [5] and [6], $\theta_1^* := \tau_0^*\theta^*(\tau_0^*)^{-1}$ is conjugate within $\text{Aut}_{\mathfrak{h}_0^*}(\mathfrak{g}^*)$ to $\tilde{\theta}^*$, which is listed in [5] and [6], i.e, there exists $\tau_1^* \in \text{Aut}_{\mathfrak{h}_0^*}(\mathfrak{g}^*)$ such that $\tilde{\theta}^* = \tau_1^*\theta_1^*(\tau_1^*)^{-1}$. By the definition of $\tilde{\theta}^*$ we have $\tau_1^*((\mathfrak{g}^*)^{\theta_1^*}) = (\mathfrak{g}^*)^{\tilde{\theta}^*}$. Thus the triple $(\mathfrak{g}^*, \sigma_0^*, \theta_1^*)$ is isomorphic to $(\mathfrak{g}^*, \sigma_0^*, \tilde{\theta}^*)$, so the triple $(\mathfrak{g}^*, \sigma^*, \theta^*)$ is isomorphic to the triple $(\mathfrak{g}^*, \sigma_0^*, \tilde{\theta}^*)$. Therefore, all non-compact triples $(\mathfrak{g}, \sigma, \theta)$ are isomorphic to one of the non-compact duals of the compact triples $(\mathfrak{g}^*, \sigma_0^*, \tilde{\theta}^*)$ classified in [5] and [6].

We suppose that \mathfrak{g}^* is of type \mathfrak{e}_7 . From what has been mentioned above, it suffices to consider the involution θ^* of \mathfrak{e}_7 that commute with each order four automorphism σ^* of \mathfrak{e}_7 . Let \mathfrak{t}^* be a maximal abelian subalgebra of the fixed point set $\mathfrak{h}^* := (\mathfrak{e}_7)^{\sigma^*}$ and let \mathfrak{t} denote the fixed point set of θ^* .

First, we assume that $\theta^*|_{\mathfrak{t}^*} = \operatorname{Id}$. Then by Lemma 2.4 and Remark 2.2 of [5] we have $\sigma^* = \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}K)$, where

$$K = K_4, K_3, K_5, K_1 + K_2, K_1 + K_6.$$

It follows from the lists of [5] and [6] that θ^* is conjugate within $\operatorname{Aut}_{\mathfrak{h}^*}(\mathfrak{e}_7)$ to one of automorphisms listed in Table I.

Next, we assume that $\theta^*|_{\mathfrak{t}^*} \neq \mathrm{Id}$. Then by Theorem 10.1 of [5] and Theorem 8.1 of [6] we have $\sigma^* = \mathrm{Ad}(\exp(\pi/2)\sqrt{-1}K)$, where

$$K = K_4, K_1 + K_6.$$

Define $\varphi \in \operatorname{Aut}(\mathfrak{g}^*)$ by

(6.1)
$$\varphi(E_{\alpha_1}) = E_{\alpha_6}, \quad \varphi(E_{\alpha_2}) = E_{\alpha_2}, \quad \varphi(E_{\alpha_3}) = E_{\alpha_5}, \quad \varphi(E_{\alpha_4}) = E_{\alpha_4}, \\ \varphi(E_{\alpha_5}) = E_{\alpha_3}, \quad \varphi(E_{\alpha_6}) = E_{\alpha_1}, \quad \varphi(E_{\alpha_7}) = E_{\alpha_0},$$

where $\{E_{\alpha_0}, \ldots, E_{\alpha_7}\}$ is the Weyl basis of \mathfrak{e}_7 . Then, θ^* is conjugate within $\operatorname{Aut}_{\mathfrak{h}^*}(\mathfrak{e}_7)$ to one of automorphisms listed in Table I (cf. [5], [6]).

Table I: $\mathfrak{g}^* = \mathfrak{e}_7$

$\mathfrak{h}^*=\mathfrak{so}(6)\oplus\mathfrak{so}(6)\oplus\mathfrak{su}(2),\ K=K_4$

	·) · · (·) ·	
$h(\theta^* = \tau_h)$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
K_1	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{so}(6) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{su}(2)$
K_2	$\mathfrak{su}(8)$	$\mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{so}(2)$
K_4	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{su}(2)$
$K_1 + K_2$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{so}(6) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{so}(2)$
$K_1 + K_6$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{su}(2)$
$K_3 + K_7$	$\mathfrak{su}(8)$	$\mathfrak{u}(3) \oplus \mathfrak{u}(3) \oplus \mathfrak{su}(2)$
$K_1 + K_2 + K_6$	$\mathfrak{su}(8)$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{so}(2)$
$K_2 + K_3 + K_7$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{u}(3) \oplus \mathfrak{u}(3) \oplus \mathfrak{so}(2)$
$K_3 + K_4 + K_7$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{u}(3) \oplus \mathfrak{u}(3) \oplus \mathfrak{su}(2)$

$\mathfrak{h}^* = \mathfrak{su}(6) \oplus \mathfrak{su}(2) \oplus \mathbb{R}, \ K = K_3$

$h(\theta^* = \tau_h)$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
K_1	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(6)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
K_2	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
K_3	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(6) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
K_4	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
K_5	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(3) + \mathfrak{u}(3)) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
K_7	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(5) + \mathfrak{u}(1)) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
$K_1 + K_2$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$K_1 + K_4$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$K_1 + K_5$	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(3) + \mathfrak{u}(3)) \oplus \mathfrak{so}(2) \oplus \mathbb{R}$
$K_3 + K_4$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$K_3 + K_5$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{s}(\mathfrak{u}(3) + \mathfrak{u}(3)) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$

$\mathfrak{h}^* = \mathfrak{su}(5) \oplus \mathfrak{su}(3) \oplus \mathbb{R}, \ K = K_5$

	,(-)	=======================================
$h(\theta^* = \tau_h)$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
K_1	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
K_3	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(3) + \mathfrak{u}(2)) \oplus \mathfrak{su}(3) \oplus \mathbb{R}$
K_5	$\mathfrak{su}(8)$	$\mathfrak{su}(5)\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
K_6	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(5) \oplus \mathfrak{s}(\mathfrak{u}(2) + \mathfrak{u}(1)) \oplus \mathbb{R}$
K_7	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{su}(5) \oplus \mathfrak{s}(\mathfrak{u}(2) + \mathfrak{u}(1)) \oplus \mathbb{R}$
$K_1 + K_5$	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$K_1 + K_6$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$K_1 + K_7$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$K_3 + K_5$	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$K_3 + K_6$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$K_3 + K_7$	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(3) + \mathfrak{u}(2)) \oplus \mathfrak{s}(\mathfrak{u}(2) + \mathfrak{u}(1)) \oplus \mathbb{R}$

Table I (continued)

$\mathfrak{h}^* = \mathfrak{g}$	$\mathfrak{su}(6) \in$) su(2)	$\oplus \mathbb{R}$.	K =	K_1 -	$+ K_2$
---------------------------------	------------------------	---------	-----------------------	-----	---------	---------

(A+)
$(\theta^* = \tau_h)$
č
Ę
Ę
5
6
$+K_2$
$+K_6$
$+K_5$
$+K_6$
$+K_7$
$+K_2+K_6$
$egin{array}{cccccccccccccccccccccccccccccccccccc$

$\mathfrak{h}^* = \mathfrak{so}(8) \oplus \mathfrak{so}(4) \oplus \mathbb{R}, \ K = K_1 + K_6$

$h(\theta^* = \tau_h)$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
K_1	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{so}(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
K_2	$\mathfrak{su}(8)$	$\mathfrak{su}(4) \oplus \mathfrak{so}(4) \oplus \mathbb{R}^2$
K_3	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(4)\oplus\mathfrak{su}(2)\oplus\mathbb{R}^3$
K_4	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$(\mathfrak{so}(4)+\mathfrak{so}(4))\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
K_7	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{so}(8)\oplus\mathfrak{su}(2)\oplus\mathbb{R}^2$
$K_1 + K_2$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{su}(4)\oplus\mathfrak{so}(4)\oplus\mathbb{R}^2$
$K_1 + K_6$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{so}(8) \oplus \mathfrak{so}(4) \oplus \mathbb{R}$
$K_2 + K_7$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(4) \oplus (\mathfrak{so}(2) + \mathfrak{so}(2)) \oplus \mathbb{R}^2$
$K_3 + K_7$	$\mathfrak{su}(8)$	$\mathfrak{su}(4)\oplus\mathfrak{su}(2)\oplus\mathbb{R}^3$
$K_4 + K_7$	$\mathfrak{su}(8)$	$(\mathfrak{so}(4)+\mathfrak{so}(4))\oplus(\mathfrak{so}(2)+\mathfrak{so}(2))\oplus\mathbb{R}$
$K_1 + K_3 + K_7$	${\mathfrak e}_6\oplus {\mathbb R}$	$\mathfrak{su}(4)\oplus\mathfrak{su}(2)\oplus\mathbb{R}^3$

$\mathfrak{h}^* = \mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{su}(2), \ K = K_4$

$ heta^*$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
φ	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{su}(4)\oplus\mathfrak{sp}(1)$
$\varphi \circ au_{K_2}$	$\mathfrak{su}(8)$	$\mathfrak{su}(4) \oplus \mathfrak{so}(2)$ $\mathfrak{su}(4) \oplus \mathfrak{sp}(1)$
$\varphi \circ \tau_{K_4}$	$\mathfrak{su}(8)$	$\mathfrak{su}(4) \oplus \mathfrak{sp}(1)$

$\mathfrak{h}^* = \mathfrak{so}(8) \oplus \mathfrak{so}(4) \oplus \mathbb{R}, \ K = K_1 + K_6$

$ heta^*$	ŧ	$\mathfrak{h}^* \cap \mathfrak{k}$
$\overline{\varphi}$	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{so}(7)\oplus\mathfrak{su}(2)$
$\varphi \circ au_{K_2}$	$\mathfrak{su}(8)$	$(\mathfrak{so}(5) + \mathfrak{so}(3)) \oplus \mathfrak{su}(2)$

 φ is the same involution as in (6.1) and $\tau_h = \operatorname{Ad}(\exp \pi \sqrt{-1}h)$.

In the case where $\theta^*|_{\mathfrak{t}^*} = \operatorname{Id}$, $K = K_4$ and $h = K_1$, since $\mathfrak{t} \cong \mathfrak{so}(12) \oplus \mathfrak{su}(2)$, the non-compact dual of \mathfrak{e}_7 is isomorphic to $\mathfrak{e}_{7(-5)}$ (cf. Table V of Chapter X of [3]). Let σ be the automorphism of $\mathfrak{e}_{7(-5)}$ induced by σ^* and $\mathfrak{h} := (\mathfrak{e}_{7(-5)})^{\sigma}$. Since

$$\mathfrak{h}^* \cong \mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{su}(2), \ \mathfrak{h}^* \cap \mathfrak{k} \cong \mathfrak{so}(6) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{su}(2),$$

Lemma 4.1 and (4.2), \mathfrak{h} is isomorphic to $\mathfrak{so}(6) \oplus \mathfrak{so}(4,2) \oplus \mathfrak{su}(2)$.

Similarly as above, from Section 5 we can determine \mathfrak{g} and $\mathfrak{h} := \mathfrak{g}^{\sigma}$ up to isomorphism for all cases. We must be remark the case where there exists a center $\mathbb{R}\sqrt{-1}K$. In this case, we can check the center $\mathbb{R}\sqrt{-1}K$ is contained in $\mathfrak{h} \cap \mathfrak{k}$. Thus, similarly as above, for all h, we can determine \mathfrak{g} and \mathfrak{h} up to isomorphism listed in Table III and IV. For example, if $K = K_3$ and $h = K_1$, then we have

$$\mathfrak{g} \cong \mathfrak{e}_{7(-5)}, \ \mathfrak{h} \cong \mathfrak{su}(6) \oplus \mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}.$$

In the case where $\theta^*|_{\mathfrak{t}^*} \neq \operatorname{Id}$, if $\sigma^* = \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}K_4)$ and $\theta^* \cong \varphi$, then similarly as in $\theta^*|_{\mathfrak{t}^*} = \operatorname{Id}$. If $K = K_1 + K_6$ and $\theta^* \cong \varphi$, then there exists the center $\mathbb{R}\sqrt{-1}(K_1 - K_6)$. Since

(6.2)
$$\begin{aligned}
\mathfrak{t} &= \operatorname{span}\{K_1 + K_6 - 2K_7, \ K_2 - K_7, \ K_3 + K_5 - 3K_7, \ K_4 - 2K_7\}, \\
\mathfrak{p}^* &= \operatorname{span}\{K_1 - K_6, \ K_3 - K_5, \ K_7\},
\end{aligned}$$

the center $\mathbb{R}\sqrt{-1}(K_1-K_6)$ is contained in $\mathfrak{h}^*\cap\mathfrak{p}^*$. Thus $\mathfrak{h}\cong\mathfrak{so}(7,1)\oplus\mathfrak{so}(3,1)\oplus\mathbb{R}$.

Remark 6.1. In the case of $\sigma^* = \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1 + K_2))$, if $\mathfrak{k}_1 = (\mathfrak{g}^*)^{\operatorname{Ad}(\exp\pi\sqrt{-1}K_6)}$ and $\mathfrak{k}_2 = (\mathfrak{g}^*)^{\operatorname{Ad}(\exp\pi\sqrt{-1}(K_1+K_6))}$, then $\mathfrak{k}_1^* \cong A_1 \oplus D_6 \cong \mathfrak{k}_2^*$. However, $\operatorname{Ad}(\exp\pi\sqrt{-1}K_6)$ is not conjugate within $\operatorname{Aut}_{\mathfrak{h}^*}(\mathfrak{g}^*)$ to $\operatorname{Ad}(\exp\pi\sqrt{-1}(K_1+K_6))$. In fact, \mathfrak{k}_1 and \mathfrak{k}_2 can be written as the direct decompositions

$$\begin{split} \mathfrak{k}_1 &= \mathfrak{t} \oplus \sum_{\substack{\alpha \in \Delta^+ \\ \alpha(K_6) = 0, 2}} (\mathbb{R} A_\alpha + \mathbb{R} B_\alpha), \\ \mathfrak{k}_2 &= \mathfrak{t} \oplus \sum_{\substack{\alpha = \sum_{i=1}^7 n_i \alpha_i \in \Delta^+ \\ (n_1, n_6) = (0, 0), (0, 2), (1, 1), (2, 2)}} (\mathbb{R} A_\alpha + \mathbb{R} B_\alpha), \end{split}$$

respectively. Let $\Delta_{\mathfrak{k}_i} = \{\alpha \in \Delta^+(\mathfrak{g}_{\mathbb{C}}^*, \mathfrak{t}_{\mathbb{C}}^*); A_{\alpha}, B_{\alpha} \in \mathfrak{k}_i\} (i = 1, 2)$. If $\alpha \in \Delta_{\mathfrak{k}_1^*}$ and $\alpha(K_6) = 0$, then $\alpha_7 \pm \alpha \notin \Delta$. If $\alpha \in \Delta_{\mathfrak{k}_1^*}$ and $\alpha(K_6) = 2$, then the cofficients of α_6 and α_7 of α are 2 and 1, respectively, so $\alpha_7 \pm \alpha \notin \Delta$. Therefore for \mathfrak{k}_1 we have

$$(6.3) A_1 = \mathfrak{su}_{\alpha_7}(2) \subset \mathfrak{h}^*.$$

On the other hand, if $\alpha = \sum_{i=1}^{7} n_i \alpha_i \in \Delta_{\mathfrak{k}_2}$ and $(n_1, n_6) = (0, 2)$, then $\alpha = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7$. If $\beta = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_7 \in \Delta_{\mathfrak{k}_2^*}$, then since there are no roots $\alpha = \sum_{i=1}^{7} m_i \alpha_i$ such that $(m_1, m_6) = (1, 3), (2, 4)$, we have $\beta \pm \gamma \notin \Delta$ where $\gamma = \sum_{i=1}^{7} n_i \alpha_i$ $((n_1, n_6) = (1, 1) \text{ or } (2, 2))$. Consequently, for any $\alpha \in \Delta_{\mathfrak{k}_2}$, we have $\beta \pm \alpha \notin \Delta$, so

$$(6.4) A_1 = \mathfrak{su}_{\beta}(2) \not\subset \mathfrak{h}^*.$$

Suppose that $\operatorname{Ad}(\exp \pi \sqrt{-1}K_6)$ is conjugate to $\operatorname{Ad}(\exp \pi \sqrt{-1}(K_1 + K_6))$. Then there exists $\mu^* \in \operatorname{Aut}_{\mathfrak{h}^*}(\mathfrak{g}^*)$ such that

$$\mu^*(\operatorname{Ad}(\exp \pi \sqrt{-1}K_6))(\mu^*)^{-1} = \operatorname{Ad}(\exp \pi \sqrt{-1}(K_1 + K_6))$$

This μ^* satisfies $\mu^*(\mathfrak{t}_1) = \mathfrak{t}_2$. Thus $\mu^*(\mathfrak{su}_{\alpha_7}(2)) = \mathfrak{su}_{\beta}(2)$, which is contradicts (6.3) and (6.4), that is, μ^* do not preserve \mathfrak{h}^* .

We put $\beta := \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$. Then it is easy to see that $\tau := t_\beta \circ t_{\alpha_6} \in \operatorname{Aut}_{\mathfrak{h}^*}(\mathfrak{g}^*)$,

$$\tau(\text{Ad}(\exp \pi \sqrt{-1}(K_1 + K_6)))\tau^{-1} = \text{Ad}(\exp \pi \sqrt{-1}K_6)$$

and

$$\tau(\operatorname{Ad}(\exp\frac{\pi}{2}\sqrt{-1}(K_1+K_2)))\tau^{-1} = \operatorname{Ad}(\exp\frac{\pi}{2}\sqrt{-1}(2K_1+K_2+3K_5+K_7)).$$

Therefore two triples

$$(\mathfrak{e}_7, \operatorname{Ad}(\exp \frac{\pi}{2} \sqrt{-1}(K_1 + K_2)), \operatorname{Ad}(\exp \pi \sqrt{-1}(K_1 + K_6)))$$

and

$$(\mathfrak{e}_7, \operatorname{Ad}(\exp \frac{\pi}{2} \sqrt{-1}(2K_1 + K_2 + 3K_5 + K_7)), \operatorname{Ad}(\exp \pi \sqrt{-1}K_6))$$

are isomorphic.

In the same way as above, for which \mathfrak{g}^* is of all types we can determine \mathfrak{g} and \mathfrak{h} up to isomorphism, which are listed in Table II–IV.

Remark 6.2. There are three additional sets of non-isomorphic triples $(\mathfrak{g}^*, \sigma^*, \theta^*)$ where $\mathfrak{g}^*, (\mathfrak{g}^*)^{\sigma^*}$ and $(\mathfrak{g}^*)^{\theta^*}$ are equal, similar to those shown in Remark 6.1 (see Lemma 7.1 of [6]). These have the following isomorphism.

The triple $(\mathfrak{e}_7, \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1+K_6)), \operatorname{Ad}(\exp\pi\sqrt{-1}(K_1+K_6)))$ becomes isomorphic to the triple $(\mathfrak{e}_7, \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(3K_1+2K_6)), \operatorname{Ad}(\exp\pi\sqrt{-1}K_1))$ using the root reflection $t_\beta t_{\alpha_1}$ where $\beta = \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5$.

The triple $(\mathfrak{e}_8, \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1 + K_8)), \operatorname{Ad}(\exp \pi \sqrt{-1}(K_1 + K_8)))$ becomes isomorphic to the triple $(\mathfrak{e}_8, \operatorname{Ad}(\exp(3\pi/2)\sqrt{-1}K_8), \operatorname{Ad}(\exp \pi \sqrt{-1}K_8))$ using the root reflection $t_\beta t_{\alpha_8}$ where $\beta = \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + 2\alpha_7 + \alpha_8$.

The triple $(f_4, \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1+K_4)), \operatorname{Ad}(\exp\pi\sqrt{-1}(K_1+K_4)))$ becomes isomorphic to the triple $(f_4, \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1+2K_4)), \operatorname{Ad}(\exp\pi\sqrt{-1}K_1))$ using the root reflection $t_{\alpha_1+\alpha_2+\alpha_3}$.

Consequently, noting Remark 5.7, we obtain the following classification theorem.

Theorem 6.3. Let $(G/H, \sigma)$ be a 4-symmetric space such that G is a non-compact simple Lie group of the exceptional type with the Lie algebra \mathfrak{g} , and \mathfrak{h} denote the Lie algebra of H with the center \mathfrak{z} . Suppose that $\dim \mathfrak{z} = 0$ or 1 and $\mathfrak{h}_{\mathbb{C}}$ contains a Cartan subalgebra in $\mathfrak{g}_{\mathbb{C}}$. Then the following Table II–IV gives the complete list of \mathfrak{g} , \mathfrak{h} , $\mathfrak{k}(=\mathfrak{g}^{\theta})$ and $\mathfrak{h} \cap \mathfrak{k}$ of the possibilities up to isomorphism.

Table II: dim $\mathfrak{z}=0,\ \sigma^*=\mathrm{Ad}(\exp(\pi/2)\sqrt{-1}K)$ and $\mathfrak{k}=\mathfrak{g}^{\theta})$

$(\mathfrak{g},\mathfrak{h},K)$	$h(\theta^* = au_h)$	ħ	β∩€
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(6)\oplus\mathfrak{so}(4,2)\oplus\mathfrak{su}(2),K_4)$	K_1	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{so}(6) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{su}(2)$
$(\mathfrak{e}_{7(7)},\mathfrak{so}(6)\oplus\mathfrak{so}(6)\oplus\mathfrak{sl}(2,\mathbb{R}),K_4)$	K_2	su (8)	$\mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{so}(2)$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(6)\oplus\mathfrak{so}(6)\oplus\mathfrak{su}(2),K_4)$	K_4	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{so}(6) \oplus \mathfrak{so}(6) \oplus \mathfrak{su}(2)$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}(6)\oplus\mathfrak{so}(4,2)\oplus\mathfrak{sl}(2,\mathbb{R}),K_4)$	$K_1 + K_2$	$\mathfrak{e}_{6}\oplus\mathbb{R}$	$\mathfrak{so}(6) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{su}(2)$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(4,2)\oplus\mathfrak{so}(4,2)\oplus\mathfrak{su}(2),K_4)$	$K_1 + K_6$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{7(7)},\mathfrak{so}^*(6)\oplus\mathfrak{so}^*(6)\oplus\mathfrak{su}(2),K_4)$	$K_3 + K_7$	su (8)	$\mathfrak{u}(3)\oplus\mathfrak{u}(3)\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{7(7)},\mathfrak{so}(4,2)\oplus\mathfrak{so}(4,2)\oplus\mathfrak{sl}(2,\mathbb{R}),K_4)$	$K_1 + K_2 + K_6$	$\mathfrak{su}(8)$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{so}(2)$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}^*(6)\oplus\mathfrak{so}^*(6)\oplus\mathfrak{sl}(2,\mathbb{R}),K_4)$	$K_2 + K_3 + K_7$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{u}(3)\oplus\mathfrak{u}(3)\oplus\mathfrak{so}(2)$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}^*(6)\oplus\mathfrak{so}^*(6)\oplus\mathfrak{su}(2),K_4)$	$K_3 + K_4 + K_7$	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{u}(3)\oplus\mathfrak{u}(3)\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(8)\oplus\mathfrak{sl}(2,\mathbb{R}),K_3)$	K_1	so (16)	$\mathfrak{su}(8) \oplus \mathfrak{so}(2)$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(8)\oplus\mathfrak{su}(2),K_3)$	K_3	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{su}(8)\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}^*(8)\oplus\mathfrak{su}(2),K_3)$	K_4	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{sp}(4)\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(4,4)\oplus\mathfrak{su}(2),K_3)$	K_6	$\mathfrak{so}(16)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(4))\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(8)},\mathfrak{su}^*(8)\oplus\mathfrak{su}(2),K_3)$	$K_3 + K_4$	$\mathfrak{so}(16)$	$\mathfrak{sp}(4)\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(4,4)\oplus\mathfrak{su}(2),K_3)$	$K_3 + K_6$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(4))\oplus\mathfrak{su}(2)$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(6,2)\oplus\mathfrak{su}(2),K_3)$	$K_1 + K_4$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(6)+\mathfrak{u}(2))\oplus\mathfrak{so}(2)$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(6,2)\oplus\mathfrak{su}(2),K_3)$	$K_1 + K_6$	$\mathfrak{so}(16)$	$\mathfrak{s}(\mathfrak{u}(6)+\mathfrak{u}(2))\oplus\mathfrak{so}(2)$
$(\mathfrak{e}_{8(8)}, \mathfrak{so}(8,2) \oplus \mathfrak{so}(6), K_6)$	K_1	$\mathfrak{so}(16)$	$(\mathfrak{so}(8)+\mathfrak{so}(2))\oplus\mathfrak{so}(6)$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}(6,4)\oplus\mathfrak{so}(6),K_6)$	K_3	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(6)+\mathfrak{so}(4))\oplus\mathfrak{so}(6)$
$(\mathfrak{e}_{8(8)},\mathfrak{so}(10)\oplus\mathfrak{so}(6),K_6)$	K_6	$\mathfrak{so}(16)$	$\mathfrak{so}(10) \oplus \mathfrak{so}(6)$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}(10)\oplus\mathfrak{so}(4,2),K_6)$	K_8	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{so}(10) \oplus (\mathfrak{so}(4) + \mathfrak{so}(2))$
$(\mathfrak{e}_{8(-24)}, \mathfrak{so}(8,2) \oplus \mathfrak{so}(4,2), K_6)$	$K_1 + K_8$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(8)+\mathfrak{so}(2))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))$
$(\mathfrak{e}_{8(-24)}, \mathfrak{so}^*(10) \oplus \mathfrak{so}^*(6), K_6)$	$K_2 + K_7$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{u}(5)\oplus\mathfrak{u}(3)$
$(\mathfrak{e}_{8(8)}, \mathfrak{so}(6,4) \oplus \mathfrak{so}(4,2), K_6)$	$K_3 + K_8$	$\mathfrak{so}(16)$	$(\mathfrak{so}(6)+\mathfrak{so}(4))\oplus(\mathfrak{so}(4)+\mathfrak{so}(2))$
$(\mathfrak{e}_{8(8)},\mathfrak{so}^*(10)\oplus\mathfrak{so}^*(6),K_6)$	$K_2 + K_6 + K_7$	$\mathfrak{so}(16)$	$\mathfrak{u}(5)\oplus\mathfrak{u}(3)$
			Land all a

Table II (continued)

ß ∩ €	$\begin{array}{c c} \mathfrak{sp}(3) \oplus \mathfrak{su}(2) & (\mathfrak{so}(4) + \mathfrak{so}(2)) \oplus \mathfrak{so}(3) \\ \mathfrak{so}(9) & \mathfrak{so}(6) \oplus \mathfrak{so}(3) \\ \mathfrak{so}(6) \oplus \mathfrak{so}(2) & \mathfrak{so}(6) \oplus \mathfrak{so}(2) \end{array}$	$\mathfrak{so}(6)\oplus\mathfrak{so}(2)$	\$ ∪ ()	$\mathfrak{su}(4)\oplus\mathfrak{sp}(1)$	$\mathfrak{su}(4)\oplus\mathfrak{so}(2)$	$\mathfrak{su}(4)\oplus\mathfrak{sp}(1)$	$\varphi : E_{\alpha_1} \to E_{\alpha_6}, \ E_{\alpha_2} \to E_{\alpha_2}, \ E_{\alpha_3} \to E_{\alpha_5}, \ E_{\alpha_4} \to E_{\alpha_4}, \ E_{\alpha_7} \to E_{\alpha_0}, \ \tau_h = \operatorname{Ad}(\exp \pi \sqrt{-1}h).$
ŧ	$\mathfrak{sp}(3) \oplus \mathfrak{su}(2)$ $\mathfrak{so}(9)$ $\mathfrak{so}(9)$	$\mathfrak{sp}(3) \oplus \mathfrak{su}(2) \mid \mathfrak{so}(6) \oplus \mathfrak{so}(2)$	ŧ	€6 ⊕ K	$\mathfrak{su}(8)$	$\mathfrak{su}(8)$	$E_{\alpha_4} \mapsto E_{\alpha_4}, \ E_{\alpha_4}$
$h(\theta^* = au_h)$	$K_1 \\ K_3 \\ K_4$	$K_1 + K_4$	θ	e	$\varphi\circ au_{K_2}$	$\varphi\circ au_{K_4}$	$E_{\alpha_3} \mapsto E_{\alpha_5}$,
$(\mathfrak{g},\mathfrak{h},K)$	$ \begin{array}{c c} \hline (f_{4(4)}, \mathfrak{so}(4,2) \oplus \mathfrak{so}(3), K_3) & K_1 \\ (f_{4(-20)}, \mathfrak{so}(6) \oplus \mathfrak{so}(3), K_3) & K_3 \\ (f_{4(-20)}, \mathfrak{so}(6) \oplus \mathfrak{so}(2,1), K_3) & K_4 \\ \hline \end{array} $	$(\mathfrak{f}_{4(4)},\mathfrak{so}(6)\oplus\mathfrak{so}(2,1),K_3)$	$(\mathfrak{g},\mathfrak{h},K)$	$(\mathfrak{e}_{7(-25)},\mathfrak{su}(4)\oplus\mathfrak{su}^*(2),K_4)$	$(\mathfrak{e}_{7(7)},\mathfrak{su}(4)\oplus\mathfrak{sl}(2,\mathbb{R}),K_4)$	$(\mathfrak{e}_{7(7)},\mathfrak{su}(4)\oplus\mathfrak{su}^*(2),K_4)$	$\varphi : E_{\alpha_1} \mapsto E_{\alpha_6}, E_{\alpha_2} \mapsto E_{\alpha_2}$

Table III: dim $\mathfrak{z}=1,\ \sigma^*=\mathrm{Ad}(\exp(\pi/2)\sqrt{-1}K)$ and $\mathfrak{k}=\mathfrak{g}^\theta$

$(\mathfrak{g},\mathfrak{h},K)$		क्र	β ∩ €
$\overline{(\mathfrak{e}_{6(-14)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)}$	K_1	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{su}(3)\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	K_4	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(3)\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	K_5	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(-14)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	$K_1 + K_2$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(2,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	$K_1 + K_5$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{su}(3)\oplus\mathfrak{su}(3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_4)$	$K_2 + K_4$	$\mathfrak{su}(6) \oplus \mathfrak{su}(2)$	$\mathfrak{su}(3)\oplus\mathfrak{su}(3)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(2,1)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_4)$	$K_1 + K_2 + K_5$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(-14)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(2,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	$K_1 + K_4 + K_5$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(6)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_3)$	K_1	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(6)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(5,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	K_2	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	K_3	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	K_4	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(3,3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	K_5	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(3))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(5,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	K_7	$\mathfrak{c}_6\oplus\mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(5,1)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_3)$	$K_1 + K_2$	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,2)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_3)$	$K_1 + K_4$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(3,3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_3)$	$K_1 + K_5$	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(3))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	$K_3 + K_4$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(3,3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_3)$	$K_3 + K_5$	$\mathfrak{e}_6\oplus\mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(3))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
, ,	-		

Table III (continued)

$(\mathfrak{g},\mathfrak{h},K)$	$h(\theta^* = \tau_h)$	क	h∩€
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,1)\oplus\mathfrak{su}(3)\oplus\mathbb{R},K_5)$	K_1	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(3,2)\oplus\mathfrak{su}(3)\oplus\mathbb{R},K_5)$	K_3	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(5)\oplus\mathfrak{su}(3)\oplus\mathbb{R},K_5)$	K_5	$\mathfrak{su}(8)$	$\mathfrak{su}(5)\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(5)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	K_6	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(5)\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(5)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	K_7	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{su}(5) \oplus \mathfrak{s}(\mathfrak{u}(2) + \mathfrak{u}(1)) \oplus \mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(4,1)\oplus\mathfrak{su}(3)\oplus\mathbb{R},K_5)$	$K_1 + K_5$	$\mathfrak{su}(8)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,1)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	$K_1 + K_6$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(4,1)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	$K_1 + K_7$	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(1))\oplus \mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus \mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(3,2)\oplus\mathfrak{su}(3)\oplus\mathbb{R},K_5)$	$K_3 + K_5$	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus\mathfrak{su}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(3,2)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	$K_3 + K_6$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus \mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus \mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(3,2)\oplus\mathfrak{su}(2,1)\oplus\mathbb{R},K_5)$	$K_3 + K_7$	su(8)	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(2))\oplus\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(7,1)\oplus\mathbb{R},K_2)$	K_1	so (16)	$\mathfrak{s}(\mathfrak{u}(7)+\mathfrak{u}(1))\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(8)\oplus \mathbb{R},K_2)$	K_2	$\mathfrak{so}(16)$	$\mathfrak{su}(8)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(6,2)\oplus \mathbb{R},K_2)$	K_3	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(6)+\mathfrak{u}(2))\oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(5,3)\oplus \mathbb{R},K_2)$	K_4	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(3))\oplus \mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(4,4)\oplus\mathbb{R},K_2)$	K_5	$\mathfrak{so}(16)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(4))\oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(7,1)\oplus \mathbb{R},K_2)$	K_8	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(7)+\mathfrak{u}(1))\oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{su}(6,2)\oplus \mathbb{R},K_2)$	$K_2 + K_3$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(6)+\mathfrak{u}(2))\oplus \mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{su}(5,3)\oplus \mathbb{R},K_2)$	$K_2 + K_4$	$\mathfrak{so}(16)$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(3))\oplus \mathbb{R}$
			1 11 11

Table III (continued)

$(\mathfrak{g},\mathfrak{h},K)$	$\mid h(\theta^* = \tau_h)$	4	$\mathfrak{h} \cap \mathfrak{k}$
$(\mathfrak{e}_{8(8)},\mathfrak{e}_{6(-14)}\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_7)$	K_1	so (16)	$(\mathfrak{so}(10) + \mathbb{R}) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{e}_{6(2)}\stackrel{.}{\oplus}\mathfrak{su}(2)\oplus\mathbb{R},K_7)$	K_2	$\mathfrak{so}(16)$	$(\mathfrak{su}(6)+\mathfrak{su}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)}, \mathfrak{e}_6 \oplus \mathfrak{su}(2) \oplus \mathbb{R}, K_7)$	K_7	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{e}_6\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{e}_6\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_7)$	$ K_8 $	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{e}_6\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$({\mathfrak e}_{8(-24)},{\mathfrak e}_{6(-14)}\oplus {\mathfrak su}(2)\oplus {\mathbb R},K_7)$	$K_1 + K_7$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(10) + \mathbb{R}) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{e}_{6(-14)}\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_7)$	$ K_1 + K_8 $	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(10) + \mathbb{R}) \oplus \mathfrak{so}(2) \oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{e}_{6(2)}\oplus \mathfrak{su}(2)\oplus \mathbb{R},K_7)$	$K_2 + K_7$	$\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{su}(6)+\mathfrak{su}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{e}_{6(2)}\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_7)$	$K_2 + K_8$	$\mathfrak{so}(16)$	$(\mathfrak{su}(6)+\mathfrak{su}(2))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{su}(3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_2)$	K_1	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(3)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_2)$	$ K_2 $	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(-20)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_2)$	K_4	50 (9)	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(f_{4(4)}, \mathfrak{su}(2,1) \oplus \mathfrak{sl}(2,\mathbb{R}) \oplus \mathbb{R}, K_2)$	$K_1 + K_3$	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{su}(2,1)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_2)$	$K_2 + K_4$	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(2)+\mathfrak{u}(1))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{g}_{2(2)},\mathfrak{su}(2)\oplus\mathbb{R},K_1)$	K_1	$\mathfrak{su}(2)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{g}_{2(2)},\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1)$	K_2	$ \mathfrak{su}(2)\oplus\mathfrak{su}(2) $	$\mathfrak{so}(2)\oplus \mathbb{R}$
$(\mathfrak{g},\mathfrak{h},K)$	θ	ब ्	$\mathfrak{h}\cap\mathfrak{k}$
$\overline{(\mathfrak{e}_{6(-26)},\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)}$	ψ	f4	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(6)},\mathfrak{su}(3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_4)$	$\psi \circ au_{K_2}$	$\mathfrak{sp}(4)$	$\mathfrak{su}(3)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(6)},\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_4)$	$\psi\circ\tau_{K_4}$	$\mathfrak{sp}(4)$	$\mathfrak{su}(3)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$\psi \ : \ E_{\alpha_1} \mapsto E_{\alpha_6}, \ E_{\alpha_2} \mapsto E_{\alpha_2}, \ E_{\alpha_3} \mapsto E_{\alpha_5}, \ E_{\alpha_4} \mapsto E_{\alpha_4}$	$\mapsto E_{\alpha_5}, E_{\alpha_4}$	$\mapsto E_{\alpha_4}$	

Table IV: dim $\mathfrak{z}=1,\ \sigma^*=\mathrm{Ad}(\exp(\pi/2)\sqrt{-1}K)$ and $\mathfrak{k}=\mathfrak{g}^\theta$

$(\mathfrak{g},\mathfrak{h},K)$	$h(\theta^* = au_h)$	ŧ	$\mathfrak{h}\cap\mathfrak{k}$
$(\mathfrak{e}_{6(-14)},\mathfrak{so}(6)\oplus\mathfrak{so}^*(4)\oplus\mathbb{R},K_3+K_6)$	K_1	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{so}(6)\oplus\mathfrak{u}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{so}(4,2)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_3+K_6)$	K_2	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{so}(6)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_3+K_6)$	K_3	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{so}(6)\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{so}(5,1)\oplus\mathfrak{so}(3,1)\oplus\mathbb{R},K_3+K_6)$	$K_1 + K_2$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{so}(5) \oplus \mathfrak{so}(3) \oplus \mathbb{R}$
$(\mathfrak{e}_{6(-14)},\mathfrak{so}(6)\oplus\mathfrak{so}(2,2)\oplus\mathbb{R},K_3+K_6)$	$K_1 + K_6$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{so}(6) \oplus (\mathfrak{so}(2) + \mathfrak{so}(2)) \oplus \mathbb{R}$
$(\mathfrak{e}_{6(-14)},\mathfrak{so}(4,2)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_3+K_6)$	$K_2 + K_3$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$(\mathfrak{so}(4)+\mathfrak{so}(2))\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(-14)},\mathfrak{so}(6)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_3+K_6)$	$K_3 + K_5$	$\mathfrak{so}(10)\oplus \mathbb{R}$	$\mathfrak{so}(6)\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(2)},\mathfrak{so}(5,1)\oplus\mathfrak{so}(3,1)\oplus\mathbb{R},K_3+K_6)$	$K_1 + K_2 + K_5$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)$	$\mathfrak{so}(5) \oplus \mathfrak{so}(3) \oplus \mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	K_1	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	K_2	su (8)	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(3,3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_2)$	K_5	su (8)	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(3))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	K_6	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(5,1)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_2)$	K_7	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	$K_1 + K_2$	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{su}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},2K_1+K_2+3K_5+K_7)\ \big $	K_6	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(3,3)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_2)$	$K_2 + K_5$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(3)+\mathfrak{u}(3))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	$K_2 + K_6$	$\mathfrak{e}_6 \oplus \mathbb{R}$	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{su}(5,1)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_2)$	$K_2 + K_7$	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{s}(\mathfrak{u}(5)+\mathfrak{u}(1))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{su}(4,2)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_2)$	$K_1 + K_2 + K_6$	su(8)	$\mathfrak{s}(\mathfrak{u}(4)+\mathfrak{u}(2))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
			1 ., 11

Table IV (continued)

$(\mathfrak{g},\mathfrak{h},K)$	$h(\theta^* = \tau_h)$	क्र	βυξ
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_1+K_6)$	K_1	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)$	$\mathfrak{so}(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{so}^*(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_1+K_6)$	K_2	$\mathfrak{su}(8)$	$\mathfrak{u}(4)\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}^*(8)\oplus\mathfrak{so}^*(4)\oplus\mathbb{R},K_1+K_6)$	K_3	$ \mathfrak{so}(12)\oplus\mathfrak{su}(2) $	$\mathfrak{u}(4)\oplus\mathfrak{u}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(4,4)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_1+K_6)$	K_4	$\mid \mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$(\mathfrak{so}(4)+\mathfrak{so}(4))\oplus\mathfrak{so}(4)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}(8)\oplus\mathfrak{so}(2,2)\oplus\mathbb{R},K_1+K_6)$	K_7	$ \mathfrak{e}_6 \oplus \mathbb{R} $	$\mathfrak{so}(8) \oplus (\mathfrak{so}(2) + \mathfrak{so}(2)) \oplus \mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}^*(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R},K_1+K_6)$	$K_1 + K_2$	$ \mathfrak{e}_6 \oplus \mathbb{R} $	$\mathfrak{u}(4) \oplus \mathfrak{so}(4) \oplus \mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}(8)\oplus\mathfrak{so}(4)\oplus\mathbb{R},3K_1+2K_6)$	K_1	$ \mathfrak{so}(12)\oplus\mathfrak{su}(2) $	$\mathfrak{so}(8) \oplus \mathfrak{so}(4) \oplus \mathbb{R}$
$(\mathfrak{e}_{7(-5)},\mathfrak{so}^*(8)\oplus\mathfrak{so}(2,2)\oplus\mathbb{R},K_1+K_6)$	$K_2 + K_7$	$\mid \mathfrak{so}(12) \oplus \mathfrak{su}(2)$	$\mathfrak{u}(4)\oplus (\mathfrak{so}(2)+\mathfrak{so}(2))\oplus \mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{so}^*(8)\oplus\mathfrak{so}^*(4)\oplus\mathbb{R},K_1+K_6)$	$K_3 + K_7$	$\mathfrak{su}(8)$	$\mathfrak{u}(4)\oplus\mathfrak{u}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(7)},\mathfrak{so}(4,4)\oplus\mathfrak{so}(2,2)\oplus\mathbb{R},K_1+K_6)$	$K_4 + K_7$	(8)	$(\mathfrak{so}(4)+\mathfrak{so}(4))\oplus(\mathfrak{so}(2)+\mathfrak{so}(2))\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}^*(8)\oplus\mathfrak{so}^*(4)\oplus\mathbb{R},K_1+K_6)$	$K_1 + K_3 + K_7$	$ \mathfrak{e}_6 \oplus \mathbb{R} $	$\mathfrak{u}(4)\oplus\mathfrak{u}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{so}(12)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_8)$	K_1	so (16)	$\mathfrak{so}(12)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{so}^*(12)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_8)$	K_2	$ \mathfrak{so}(16) $	$\mathfrak{u}(6)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}^*(12)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_8)$	K_3	$ $ $\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{u}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}(8,4)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_8)$	K_4	$ $ $\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$(\mathfrak{so}(8)+\mathfrak{so}(4))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{so}(6,6)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_8)$	K_5	$ \mathfrak{so}(16) $	$(\mathfrak{so}(6)+\mathfrak{so}(6))\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}(12)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_8)$	K_8	$ $ $\mathfrak{e}_7 \oplus \mathfrak{su}(2)$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}^*(12)\oplus\mathfrak{sl}(2,\mathbb{R})\oplus\mathbb{R},K_1+K_8)$	$K_1 + K_2$	$ $ $\mathfrak{e}_7\oplus\mathfrak{su}(2)$	$\mathfrak{u}(6)\oplus\mathfrak{so}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(8)}, \mathfrak{so}^*(12) \oplus \mathfrak{su}(2) \oplus \mathbb{R}, K_1 + K_8)$	$K_1 + K_3$	$ \mathfrak{so}(16) $	$\mathfrak{u}(6)\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{8(-24)},\mathfrak{so}(12)\oplus\mathfrak{su}(2)\oplus\mathbb{R},3K_8)$	K_8	$\mid \mathfrak{e}_7 \oplus \mathfrak{su}(2)$	$\mathfrak{so}(12) \oplus \mathfrak{su}(2) \oplus \mathbb{R}$
$(\mathfrak{e}_{8(8)},\mathfrak{so}(8,4)\oplus\mathfrak{su}(2)\oplus\mathbb{R},K_1+K_8)$	$K_4 + K_8$	$\mathfrak{so}(16)$	$(\mathfrak{so}(8)+\mathfrak{so}(4))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$

Table IV (continued)

$(\mathfrak{g},\mathfrak{h},K)$	$h(\theta^* = \tau_h)$	क्र	$\mathfrak{h} \cap \mathfrak{k}$
$(\mathfrak{f}_{4(4)},\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R},K_1+K_4)$	K_1	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)\mid\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{sp}(2,\mathbb{R})\oplus\mathfrak{sp}(1,\mathbb{R})\oplus\mathbb{R},K_1+K_4)$	K_2	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{u}(2)\oplus\mathfrak{u}(1)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(-20)},\mathfrak{sp}(1,1)\oplus\mathfrak{sp}(1)\oplus\mathbb{R},K_1+K_4)$	K_3	50 (9)	$(\mathfrak{sp}(1)+\mathfrak{sp}(1))\oplus\mathfrak{sp}(1)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R},K_1+K_4)$	K_4	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{sp}(1,1)\oplus\mathfrak{sp}(1)\oplus\mathbb{R},K_1+K_4)$	$K_1 + K_3$	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$(\mathfrak{sp}(1)+\mathfrak{sp}(1))\oplus\mathfrak{sp}(1)\oplus\mathbb{R}$
$(\mathfrak{f}_{4(4)},\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R},K_1+2K_4)$	K_1	$\mathfrak{sp}(3)\oplus\mathfrak{su}(2)$	$\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)\oplus\mathbb{R}$
$(\mathfrak{g},\mathfrak{h},K)$	θ	ŧ	$\mathfrak{h} \cap \mathfrak{k}$
$(\mathfrak{e}_{6(-26)}, \mathfrak{so}(6) \oplus \mathfrak{so}(3,1), K_3 + K_5)$	ψ	f 4	$\mathfrak{so}(6)\oplus\mathfrak{so}(3)\oplus\mathbb{R}$
$(\mathfrak{e}_{6(6)}, \mathfrak{so}(3,3) \oplus \mathfrak{so}^*(4), K_3 + K_5)$	$\psi \circ au_{K_2}$	$\mathfrak{sp}(4)$	$(\mathfrak{so}(3)+\mathfrak{so}(3))\oplus\mathfrak{su}(2)\oplus\mathbb{R}$
$(\mathfrak{e}_{7(-25)},\mathfrak{so}(7,1)\oplus\mathfrak{so}(3,1)\oplus\mathbb{R},K_1+K_6)\mid\varphi$	e	ce⊕ R	$\mathfrak{so}(7)\oplus\mathfrak{so}(3)$
$(\mathfrak{e}_{7(7)},\mathfrak{so}(5,3)\oplus\mathfrak{so}(3,1)\oplus\mathbb{R},K_1+K_6) \ \ \varphi\circ\tau_{K_2}$	$\varphi\circ au_{K_2}$	su (8)	$\mathfrak{so}(5) \oplus \mathfrak{so}(3)$
TI DEPLY TOWN TOWN INTERPRETATION OF THE PROPERTY OF THE PROPERTY THE PROPERTY OF THE PROPERTY	I ond Toble	11.	

Remark 6.4. $K \in \mathfrak{g}^*$ can be uniquely written as

$$K = K_{\mathfrak{k}} + K_{\mathfrak{p}^*}, \quad K_{\mathfrak{k}} \in \mathfrak{k}, K_{\mathfrak{p}^*} \in \mathfrak{p}^*.$$

Thus $K_{\mathfrak{p}^*} = 0$ if and only if $K \in \mathfrak{g} = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{p}^*$. Therefore, if $K \in \mathfrak{h}^* \cap \mathfrak{k}$, then $\sigma^* \in \operatorname{Int}(\mathfrak{g}^*)$. In the case of $\mathfrak{g}^* = \mathfrak{e}_7$ and $\theta^* \cong \varphi$, \mathfrak{k} and \mathfrak{p}^* is given by (6.2). Thus $K_4 = (K_4 - 2K_7) + 2K_7$, $K_1 + K_6 = (K_1 + K_6 - 2K_7) + 2K_7$ are not elements in $\mathfrak{h}^* \cap \mathfrak{k}$, so the automorphisms which induced by $\sigma^* = \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}K_4)$ and $\sigma^* = \operatorname{Ad}(\exp(\pi/2)\sqrt{-1}(K_1 + K_6))$ are not inner. Similarly as above we can check that all the other $\sqrt{-1}K$ in Table II-V are the elements in $\mathfrak{h} \cap \mathfrak{k}$.

Consequently, except for above examples in the case where $\mathfrak{g}^* = \mathfrak{e}_7$ and $\theta|_{\mathfrak{t}^*} \neq \mathrm{Id}$, all automorphisms σ^* of order four of \mathfrak{g}^* can be written as $\sigma^* = \mathrm{Ad}(\exp(\pi/2)\sqrt{-1}K)$ for some $K \in \mathfrak{k}$. Therefore σ^* is an inner automorphism of \mathfrak{g} .

Acknowledgments. The authors are deeply grateful to the anonymous referee of this paper for very careful reading and useful suggestions.

References

- [1] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962), 485-535.
- [2] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
- [3] S. Helgason, Differential Geometry, Lie groups, and Symmetric Spaces, Academic Press, New York London, 1978.
- [4] J. A. Jiménez, Riemannian 4-symmetric spaces, Trans. Amer. Math. Soc. **306** (1988), 715-734.
- [5] H. Kurihara and K. Tojo, Involutions of compact Riemannian 4-symmetric spaces, Osaka J. Math. 45 (2008), 643-689.
- [6] H. Kurihara and K. Tojo, Involutions of a compact 4-symmetric space of exceptional type, Osaka J. Math. 52 (2015), 1101-1124.
- [7] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357.
- [8] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I,II, J. Differential Geom. 2 (1968), 77-114, 115-159.

Department of Mathematics, Ibaraki University Bunkyo, Mito, 310-8512 Japan

 $\hbox{E-mail address}: hiroyuki.kurihara.math@vc.ibaraki.ac.jp\\$

Department of Mathematics Chiba Institute of Technology Shibazono, Narashino, Chiba 275-0023 Japan

E-mail address: tojo.koji@it-chiba.ac.jp