
ARC SCHEME AND HIGHER DIFFERENTIAL FORMS

YANN LE DRÉAU AND JULIEN SEBAG

Abstract. Let k be a field. In this article, we identify the component of weight 2 of
the natural Gm,k-graduation on the k-algebra of the arc scheme attached to an affine
algebraic variety X with the module of the 2-nd order derivations on X. We in particular
deduce, from this property, characterizations of the geometry of hypersurfaces (in affine
spaces) in terms of the nilpotency on arc scheme.

1. Introduction

1.1. Let k be a field. For every integer m P N, every n P N Y t8u let us note An :“
krx1, . . . , xmsn :“ krpxi,jq; i P t1, . . . ,mu, j P t0, . . . , nus which has a structure of A :“
krx1, . . . , xms-module via the identification of A0 “ krx1, . . . , xms0 and A. For every
polynomial f P krx1, . . . , xms, there exists a unique family p∆spfqqsPN of polynomials in
krx1, . . . , xms8, only depending on the polynomial f , such that the following equality
holds in the ring krx1, . . . , xmsnrts:

f

¨

˝

˜

n
ÿ

j“0
xi,jt

j

¸

iPt1,...,mu

˛

‚“

n
ÿ

s“0
∆spfq

˜

pxi,jqiPt1,...,mu

jPt0,...,su

¸

ts pmod tn`1
q. (1.1)

For every affine k-variety X “ Specpkrx1, . . . , xms{Iq and every n P NYt8u the k-scheme
LnpXq defined by Specpkrx1, . . . , xmsn{x∆spfq, s P t0, . . . , nu, f P Iyq is the associated
jet scheme of level n when n P N and the associated arc scheme when n “ 8. The
natural Gm,k-action on An, with n P N Y t8u, defined to be with weight j on every
variable xi,j for every integer i P t1, . . . ,mu and every integer j P t0, . . . , nu, induces a
graduation on An for which the polynomial ∆spfq is a homogeneous element with weight
s for every integer s P N and every polynomial f P A. We say that ∆spfq is isobaric with
weight s. This usual observation gives rise to a Gm,k-action on the k-scheme LnpXq, for
every n P N Y t8u (which also is an action of the multiplicative monoid A1

k).

1.2. Let X be an affine k-variety. Attached to the former Gm,k-action, we consider the
weight grading on the k-algebra OpL8pXqq; we denote it by

OpL8pXqq “
à

ně0
W n

OpXq.

In this decomposition, one can easily observe that the OpXq-module W 1
OpXq can be nat-

urally identified with the module of Kähler differential forms Ω1
OpXq on X.
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1.3. In this article, we extend this observation by constructing a natural isomorphism
of OpXq-modules between W 2

OpXq and the module Ωp2q

OpXq{k formed by the 2-nd order
differential forms on X. Precisely, for every integer n ě 1, we show how to use the
universal property defining Ωpnq

OpXq{k in order to exhibit a morphism of OpXq-modules

φn
OpXq : Ωpnq

OpXq{k Ñ W n
OpXq (1.2)

and show the following statement:

Theorem 1.4. Let k be a field. Let I Ă A “ krx1, . . . , xms be an ideal and B “ A{I.
The morphism of B-modules φ2

B induces an isomorphism of B-modules from Ωp2q

B{k to W 2
B.

Let us stress that, for n “ 1, the morphism φn
OpXq provides the identification mentionned

above and that, for n ě 3, the picture is much more complicated since φn
OpXq stops to

be bijective in general. For example, when the k-variety is assumed to be smooth, the
modules Ωpnq

OpXq{k,W
n
OpXq are free OpXq-modules but, in general, with nonequal ranks.

1.5. Theorem 1.4 has various geometric applications in the study of arc scheme. A
by-product of our main result can be formulated as follows:

Corollary 1.6. Let k be a perfect field. Let m ě 1 be a positive integer. Let X be an
integral hypersurface of Am

k .
(1) The following assertions are equivalent:

(a) The hypersurface X is normal.
(b) The OpXq-module W 2

OpXq is torsionfree.
(c) The OpXq-module NilradpOpL8pXqqq X W 2

OpXq “ p0q.
(2) The following assertions are equivalent:

(a) The hypersurface X is regular.
(b) The OpXq-module W 2

OpXq is projective.

In particular, if X is an integral affine plane curve, then OpXq-module W 2
OpXq is tor-

sionfree if and only if it is projective.
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2. Notations, conventions

2.1. In this article, k is a field with an arbitrary characteristic. A k-variety is a k-
scheme of finite type. If the field k is assumed to be perfect, every reduced k-variety
X is geometrically reduced, then RegpXq (which can be understood equivalently as the
locus formed by the regular points or the smooth points) is not empty or, equivalently,
SingpXq “ X.

2.2. Let R be a k-algebra and M be a R-module. Let n ě 1 be a positive integer.
According to [11, Chapter I,§1], a n-th order k-derivation from R to M is a differential
operator with a zero constant term, that is to say a morphism of k-vector spaces D :
R ÝÑ M which satisfies the Leibniz rule with order n:

Dpa0 ¨ ¨ ¨ anq “

n
ÿ

s“1
p´1q

s´1
ÿ

0ďi1ă¨¨¨ăisďn

ai1 ¨ ¨ ¨ aisDpa0 ¨ ¨ ¨ qai1 ¨ ¨ ¨ qais ¨ ¨ ¨ anq (2.1)
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for every element a0, ¨ ¨ ¨ , an P R. In this identity, one denotes by a0 ¨ ¨ ¨ qai1 ¨ ¨ ¨ qais ¨ ¨ ¨ an

the element
ś

0ďjďn
j‰i1,¨¨¨ ,is

aj. We denote by Derpnq

k pR,Mq the R-module formed by n-th order

k-derivations from R to M , and simply Derpnq

k pR,Rq by Derpnq

k pRq. One has Derp1q

k pRq “

DerkpRq.

Example 2.3. The datum of f ÞÑ p∆spfqqsPN induces a Hasse-Schmidt derivation (e.g.,
see [7, §27] or [2, Proposition 7.5.1]). In this way, one knows that the k-linear map
∆n : f ÞÑ ∆npfq, defines, for every integer n ě 1, a n-th order derivation from A to W n

A,
by [11, Chapter I, Proposition 5].

2.4. By [12, Proposition 1.6], one knows that the functor attached to R ÞÑ Derpnq

k pRq

is representable by a R-module Ωpnq

R{k called the module of Kähler differentials of order
n. (When n “ 1, this construction corresponds to the usual notion of module of Kähler
differentials.) We give a concrete description of the R-module Ωpnq

R{k (simply denoted by
Ωpnq

R ) which is due to [11, Chapter II,§1] and [12, §1]. The k-algebra RbkR, endowed with
the morphism of k-algebra R ÝÑ R bk R which maps x P R to x b 1, can be considered
as a R-algebra. Let J be the kernel of the product map RbkR ÝÑ R. For every element
x P R, let us stress that the element 1 b x´ xb 1 belongs to the ideal J ; the subset of J
defined by the datum of the elements of the form 1 bx´xb 1 forms a generating system
of the ideal J . The module of Kähler differentials of order n then is constructed as the
quotient J{Jn`1. It is equipped with the following derivation of order n

dR : R ÝÑ Ωpnq

R{k “ J{Jn`1

x ÞÝÑ r1 b x ´ x b 1s.

For every element x P R, we denote by r1bx´xb1s the class of the element 1bx´xb1
modulo Jn`1. Let us observe that, by construction the R-module Ωpnq

R{k is generated by
the family pdRpxqqxPR.

Example 2.5. Let A “ krx1, . . . , xms. The A-module Ωpnq

A{k is free. A basis consists of the
differential forms pdApxqqα :“

ś

iPt1,...,mu
dApxiq

αi with α P Nm. The universal derivation
dA is given by the formula :

dApfq “
ÿ

1ď|α|ďn

δαpfqdpxq
α (2.2)

for every polynomial f P A (see [11, Chapter II,§2]). In this formula, the polynomial
δαpfq is obtained as the coefficient of tα1

1 ¨ ¨ ¨ tαm
m in the expression fppxi ` tiqq ´ fppxiqiq.

3. Proof of theorem 1.4

3.1. Let n ě 1 be an integer. Let I Ă A be an ideal and B “ A{I. Let π : A Ñ B be the
quotient morphism and πn : An Ñ Bn :“ An{x∆spfq : s P t0, . . . , nu, f P Iy the induced
morphism. The morphism of k-modules πn ˝ ∆n : A Ñ W n

B induces, by the universal
property of quotient, a n-th order derivation from B to W n

B. Hence, by [12, Proposition
1.6], we deduce, by adjunction, the existence of a canonical morphism of B-modules

φn
B : Ωpnq

B ÝÑ W n
B (3.1)

which satisfies the formula φn
BpdBpfqq “ πn ˝ ∆npfq for every element f P A.
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3.2. Let us begin by recalling the proof of the corresponding statement when n “ 1.
We observe that the morphism φ1

A, defined by dxi ÞÑ xi,1 for every integer i P t1, . . . ,mu,
induces an isomorphism from Ω1

B – Ω1
A{xdf, f P Iy`IΩ1

A to W 1
B – W 1

A{xxi,1f, ∆1pfq, i P

t1, . . . ,mu, f P Iy since dApfq “
řm

i“1 Bxi
pfqdApxiq and ∆1pfq “

řm
i“1 Bxi

pfqxi,1.

3.3. Let us prove theorem 1.4. Let us begin by a preliminary observation. For every
integer i P t1, . . . ,mu, we set Ti “ xi,1t`xi,2t

2. Let us set, for every integer i P t1, . . . ,mu,
Tα “

śm
i“1 T

αi
i and ei “ p0, ¨ ¨ ¨ , 1, ¨ ¨ ¨ , 0q for the i-th canonical basis vector in Nm. We

have

fppxi,0 ` Tiqiq “ fppxi,0qiq `

˜

ÿ

|α|“1
δαpfqTα

¸

`

˜

ÿ

|α|“2
δαpfqTα

¸

` p¨ ¨ ¨ q

“ fppxi,0qiq `

˜

m
ÿ

i“1
δei

pfqxi,1

¸

t `

˜

m
ÿ

i“1
δei

pfqxi,2

¸

t2 `

˜

ÿ

iďj

δei`ej
pfqxi,1xj,1

¸

t2 ` p¨ ¨ ¨ q

Because of the uniqueness of the ∆ipfq, we conclude that

∆2pfq “

˜

m
ÿ

i“1
δei

pfqxi,2

¸

`

˜

ÿ

1ďiďjďm

δei`ej
pfqxi,1xj,1

¸

(3.2)

˝ Let us describe our main ingredients. By subsection 3.1, we know that B2 “

A2{xtf,∆1pfq,∆2pfq, f P Iuy. We set I2 :“ xtf,∆1pfq,∆2pfq, f P Iuy Ă A2. In
this way, we deduce that

W 2
B “

W 2
A ` I2

I2
“

W 2
A

I2 X W 2
A

“
p‘1ďiďjďmA ¨ xi,1xj,1q

À
`

‘iPt1,...,muA ¨ xi,2
˘

IW 2
A ` xtxi,1∆1pfq,∆2pfq, f P I, i P t1, . . . ,muuy

.

On the other hand, by [1, Proposition 2.5] or [11, Chapter II, Corollary 14.1], we know
that

Ωp2q

B –
Ωp2q

A bA B

xdApfq b 1, dApxiqdApfq b 1, i P t1, . . . ,mu, f P Iy

In this end, by subsection 3.1, the morphism of A-modules φ2
A (resp. φ2

B) is defined by
dApfq ÞÑ ∆2pfq (resp. φ2

BpdBpfqq “ π2 ˝ ∆2pfq) for every polynomial f P A.
˝ Let us introduce the morphism of A-modules ψ2

A : W 2
A Ñ Ωp2q

A . Because of formula
(3.2), we introduce the morphism of A-modules ψ2

A defined by ψ2
Apxi,2q “ dApxiq and

ψ2
Apxi,1xj,1q “ dApxiqdApxjq for every pair of integers pi, jq P t1, . . . ,mu2. Let us stress

that, by the construction of the morphism ψ2
A and formula (3.2) , we have

ψ2
Apφ2

ApdApfqqq “ ψ2
Ap∆2pfqq “ dApfq. (3.3)

In other words, the morphism ψ2
A is a retraction of φ2

A.
˝ Let us prove that ψ2

A induces a morphism of B-modules from W 2
B to Ωp2q

B . For every
integer j P t1, . . . ,mu, we have

ψ2
Ap∆1pfqxj,1q “ ψ2

Ap

m
ÿ

i“1
Bxi

pfqxi,1xj,1q “

m
ÿ

i“1
Bxi

pfqψ2
Apxi,1xj,1q “

m
ÿ

i“1
Bxi

pfqdApxiqdApxjq.

On the other hand, since the product of three terms of the form dApxsq is zero in Ωp2q

A ,
we have:
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dApfqdApxjq “ dApxjq

˜

ÿ

1ď|α|ď2
δαpfqdApxq

α

¸

“ dApxjq

˜

ÿ

|α|“1
δαpfqdApxq

α

¸

“

m
ÿ

i“1
Bxi

pfqdApxiqdApxjq

In other words, the formula ψ2
Ap∆1pfqxj,1q “ dApfqdApxjq holds true for every integer

j P t1, . . . ,mu. In the end, for every integer j P t1, . . . ,mu, we also have ψ2
Apfxj,2q “

fdApxjq. Hence, the morphism ψ2
A induces a morphism of B-modules ψ2

B : W 2
B Ñ Ωp2q

B .
˝ Let us prove that the morphisms of B-modules φ2

B, ψ
2
B are mutually inverse. By

equaliy (3.3), we know that ψ2
B also is a retraction of φ2

B. Let P̄ P W 2
B. By the very def-

initions, for every lifting P P W 2
A, there exist polynomials ai, bi P A, with i P t1, . . . ,mu,

such that:
P “

m
ÿ

i“1
aixi,2 `

ÿ

1ďiďjďm

bi,jxi,1xj,1

Let us observe that, since the family p∆sqs is a high-order derivation, we have, for every
i, j P t1, . . . ,mu,

∆2pxixjq “
ř2

s“0 ∆spxiq∆2´spxjq

“ xi,0xj,2 ` xi,2xj,0 ` xi,1xj,1.
(3.4)

On the other hand, by the very definition of dA, we have
dApxixjq “ xidApxjq ` xjdApxiq ` dApxiqdApxjq. (3.5)

By the definitions of the morphisms φ2
A, ψ

2
A and formulas (3.4) and (3.5), we obtain that

pφ2
B ˝ ψ2

BqpP̄ q “ pπ2 ˝ φ2
Aq

˜

m
ÿ

i“1
aidApxiq `

ÿ

1ďiďjďm

bi,jdApxiqdApxjq

¸

“ π2

˜

m
ÿ

i“1
aixi,2 `

ÿ

1ďiďjďm

bi,jφ
2
ApdApxiqdApxjqq

¸

“ π2

˜

m
ÿ

i“1
aixi,2 `

ÿ

1ďiďjďm

bi,jφ
2
ApdApxixjq ´ xidApxjq ´ xjdApxiqq

¸

“ π2

˜

m
ÿ

i“1
aixi,2 `

ÿ

1ďiďjďm

bi,jp∆2pxixjq ´ xi∆2pxjq ´ xj∆2pxiqq

¸

“ π2

˜

m
ÿ

i“1
aixi,2 `

ÿ

1ďiďjďm

bi,jxi,1xj,1

¸

“ P̄ .

Remark 3.4. In general, there is no hope for W n
B to be isomorphic to Ωpnq

B . We illustrate
here this remark by several properties. By [1, Theorem 4.3], one knows that, for every
integer n ě 1, the k-variety H “ V pfq, attached to f P A, is normal if and only if Ωpnq

OpHq

is torsion-free. (Let us stress that for n “ 1 the former property is classical; e.g., see
[6, Corollary 9.8].) In other hand, it is quite simple to find examples of such a normal
hypersurface H with nonzero TorspW n

OpHqq. As an illustration, one can consider example
5



4.9, and, more generally, [5, Conjecture 9.1] suggests that any normal hypersurface H
without rational singularity share this property. Another observation leads us to conclude
that, in general, W n

B,Ω
pnq

B are not isomorphic. If the k-algebra B is assumed to be smooth,
then both B-modules W n

B,Ω
pnq

B are free; but their ranks in general differ.

4. Applications

In this section, we show that theorem 1.4 and properties of the 2-nd order derivation
module can be used to prove corollary 1.6. We also explain how to use theorem 1.4 to
study the torsion submodule of the 2-nd order derivation module. Other general results
on the interpretation of geometric properties on algebraic varieties in terms of nilpotency
on arc scheme can be found, e.g., in [10, 13, 14, 15].

Lemma 4.1. Let k be a field of characteristic zero. Let n ě 1 be a positive integer. Let
X be an integral affine k-variety. Then the OpXq-module TorspW n

OpXqq is formed by the
nilpotent isobaric functions on L8pXq with weight n.

Proof. Let us fix an embedding X ãÑ Am
k “ Specpkrx1, . . . , xmsq defined by the datum

of a prime ideal I of A. We denote by rIs the ideal of A8 generated by the ∆npgq for
every integer n P N and every polynomial g P I. By definition, one have L8pXq “

SpecpA8{rIsq. Let f̄ P OpL8pXqq be a function that we assumed to be isobaric with
weight n. Then, the function f̄ is torsion if and only if there a nonzero ā P OpXq such
that āf̄ “ 0; hence, the function āf̄ belongs to the nilradical of OpL8pXqq, which is
prime ideal of OpL8pXqq by the Kolchin irreducibility. We conclude that the function f̄
belongs to the nilradical of OpL8pXqq. Indeed, if any polynomial lifting a P krx1, . . . , xms

belongs to the radical of rIs in A8, then, because of a direct argument of weight, we shall
have a P I which is impossible by the assumption on ā. Conversely, if f̄ is nilpotent,
e.g., by [8, Lemma 3.7], there exists a polynomial h R I and an integer s P N such that
hsf P rIs, which implies that f̄ P TorspOpL8pXqqq by definition. That concludes the
proof. □

4.2. For every R-module M , we denote by M_ its dual, i.e., M_ :“ HomRpM,Rq. We
assume from now on that R is a noetherian domain, M “ p0q is finitely generated. Let
K be the fraction field of R. Let ℓKpMq : M Ñ MK :“ M bR K be the localization
morphism. One observes, because of the very definitions, that:

TorspMq :“ TorsRpMq “ KerpℓKpMqq. (4.1)

Moreover, if cM : M Ñ M__ is the canonical morphism of R-modules, one also has:

TorspMq “ KerpcM q. (4.2)

This formula needs a quick justification. The following diagram is commutative

M
cM //

ℓKpMq

��

M__

ℓKpM__q

��
MK :“ M bR K –

// M__ bR K – M__
K .

Since the bottom horizontal morphism is an isomorphism, then, by (4.1), it follows from
the commutativity of the former diagram that TorspMq “ c´1

M pℓKpM__q´1p0qq. But,
since R is a domain and M__ a dual, we know ℓ´1

K pM__qp0q “ TorspM__q “ p0q. In the
6



end, let us observe that the morphism ℓKpMq factorizes into

M
ℓxpMq

// Mx :“ M bR Rx

ℓKpMxq
// MK

for every point x P SpecpRq. Thus, one has

TorspMq “
č

xPSpecpRq

pM X TorsRxpMxqq. (4.3)

Thus, the Rx-module TorspMxq is torsionfree for every point x P SpecpRq if and only if
TorspMq “ p0q,

Proposition 4.3. Let k be a field of characteristic zero. Let n ě 1 be a positive integer.
Let X be an integral affine k-variety. Then submodule of the nilradical of OpL8pXqqq

formed by the isobaric functions with weight n equals the submodule
č

θPpW n
OpXq

q_

Kerpθq.

Proof. By lemma 4.1, we need to prove that TorspW n
OpXqq “

Ş

θPpW n
OpXq

q_ Kerpθq. Now, let
us observe that

Ş

θPpW n
OpXq

q_ Kerpθq coincides with the kernel N of the canonical morphism
W n

OpXq Ñ pW n
OpXqq

__. The proof concludes from the fact that TorspW n
OpXqq “ N ; see

formula (4.2). □

Recall that the morphism of B-modules ℓ ÞÑ ℓ ˝ dB defined from HomBpΩp2q

B , Bq to
Derp2q

k pBq is an isomorphism; hence, by theorem 1.4, we deduce that HomBpW 2
B, Bq –

Derp2q

k pBq. Let θ P Derp2q

k pBq be a 2-nd order derivation such that θ “ ℓ ˝ dB with
ℓ P HomBpΩp2q

B , Bq. Thanks to the former remark, one can define the image of any
element P̄ P W 2

B by θ by setting

θ ¨ P̄ “ ℓppφ2
Bq

´1
pP̄ qq P B.

Proposition 4.3 asserts that P̄ P W 2
B is torsion if and only if its image by every 2-nd order

derivation is zero. This property can be linked to [15, Corollary 1.4] or [4, Corollary 4.8].

Example 4.4. To illustrate this point of view, let us consider the polynomial f “ x3`y2 P

krx, ys, with B “ A{xfy. Let us set g :“ 4x0y2´x1y1´6x2y0, h :“ 8y0y2`12x2
0x2`3x0x

2
1 P

A2 whose images in the ring B are respectively denoted by ḡ, h̄. The relations in the ring
A2

2y3
0g “ y2

0 ¨ p4x0p2y0y2q ´ x1p2y0y1q ´ 12y2
0x2q

” y2
0 ¨ p4x0p´3x2

0x2 ´ 3x0x
2
1 ´ y2

1q ´ x1p2y0y1q ´ 12y2
0x2q pmod ∆2pfqq

” y2
0 ¨ p´9x2

0x
2
1 ´ 4x0y

2
1 ´ x1p3x2

0x1 ` 2y0y1q ´ 12x2px3
0 ` y2

0qq pmod ∆2pfqq

” ´x0 ¨ p9x0y
2
0x

2
1 ` p2y0y1q2q pmod f,∆1pfq,∆2pfqq

” ´x0 ¨ p9x0y
2
0x

2
1 ` 9x4

0x
2
1q pmod f,∆1pfq,∆2pfqq

” ´9x2
0x

2
1 ¨ py2

0 ` x3
0q pmod f,∆1pfq,∆2pfqq

” 0 pmod f,∆1pfq,∆2pfqq

imply that g is a torsion element in the ring B2 (which is nonzero). In the same spirit,
we observe that

h ” ´4p3x2
0x2 ` 3x0x

2
1 ` y2

1q ` 12x2
0x2 ` 3x0x

2
1 pmod ∆2pfqq

” ´p9x0x
2
1 ` 4y2

1q pmod ∆2pfqq

.
7



Then, we conclude, in the same way, that y2
0h P I2; hence, h̄ is a (nonzero) torsion

element in B2. Let us consider the 2-nd order derivation p3x2By ´ 2yBxq2 P Derp2q

k pAq.
It clearly induces a 2-nd order derivation θ P Derp2q

k pBq such that θ “ ℓ ˝ dB with
ℓ : Ωp2q

B Ñ B defined by dBpx̄q ÞÑ ´6x̄2, dBpȳq ÞÑ ´12x̄ȳ, dBpx̄q2 ÞÑ 8ȳ2, dBpȳq2 ÞÑ 18x̄4,
dBpx̄qdBpȳq ÞÑ ´12x̄2ȳ. Then, we obtain, by the very-definition, that

$

’

’

’

’

&

’

’

’

’

%

θ ¨ ḡ “ 4xp´12x̄ȳq ´ p´12x̄2ȳq ´ 6yp´6x̄2q

“ 0,
θ ¨ h̄ “ 8yp´12x̄ȳq ` 12x2p´6x̄2q ` 3xp8ȳ2q

“ ´72x̄pȳ2 ` x̄3q

“ 0.

Remark 4.5. Let us note that one can attach, to every ℓ P pW n
OpXqq

_, a n-th order
derivation θℓ P Derpnq

k pOpXqq defined by ℓ ˝ φn
OpXq ˝ dn

OpXq. This observation suggests the
following question: does every n-th order derivation θ P Derpnq

k pOpXqq factorize through
W n

OpXq (in a non-unique way)? Since every differential operator on smooth varieties are
generated by derivations, we can deduce that this question admits a positive answer for
smooth varieties X. This question is also related to the following one, which is stronger1:
does the morphism φn

OpXq admit a retraction ψn
OpXq : W n

OpXq Ñ Ωpnq

OpXq
? Once again, we

can prove that, if the k-variety X is assumed to be smooth, this second question also
admits a positive answer. It seems to us plausible that such questions are related to the
singularities of X.

4.6. The existence of an isomorphism W 2
B Ñ Ωp2q

B for every k-algebra B “ A{I of finite
type provides new algorithms to compute TorspΩp2q

B q. Indeed, after identifying TorspΩp2q

B q

with TorspW 2
Bq, one can apply the algorithms introduced in [9, §5] whose output will

provide a presentation for TorspW 2
Bq. We denote by rIs the ideal generated by the ∆spfq,

with f P I and s P N, in the ring A8. Precisely, these algorithms will compute, in this
particular case, a Groebner basis for the ideal N2 “

a

rIs X A2 in the ring A2. This
Groebner basis obviously gives rise to a generating system for TorspW 2

Bq by lemma 4.1.
See example 4.7. (See also [5, 8] for related considerations).

Example 4.7. To illustrate this remark, let us consider the polynomial f “ x3 ` y2 P

krx, ys, with B “ A{xfy. We set Epfq “ 3y0x1 ´ 2x0y1. Here, [9, §5] applied with the
lexicographic order and ordering y2 ą y1 ą y0 ą x2 ą x1 ą x0, provides a Groebner
basis for the nilpotent functions in OpB8q induced by polynomials in A2. From this
computation we deduce in particular a presentation of TorspW 2

Bq by “picking out” the
elements with weight w ď 2 (see lemma 4.1). We obtain that TorspW 2

Bq coincides with

π2pxfW 2
A, x1Epfq, y1Epfq, 9x0x

2
1 ` 4y2

1, 4x0y2 ´ x1y1 ´ 6x2y0, 8y0y2 ` 12x2
0x2 ` 3x0x

2
1yq

1Actually, this second question is equivalent to the problem to determine whether, for every
OpXq-module M , for every n-th order derivation θ P Derpnq

k pOpXq, Mq, there exists a morphism
ℓ P HomOpXqpW n

OpXq
, Mq such that θ “ ℓ ˝ φn

OpXq
˝ dn

OpXq
.
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Then we deduce that TorspΩp2q

B q is isomorphic to the quotient of Ωp2q

A bA B by the sub-
module generated by the images of the following elements:

$

’

’

’

’

&

’

’

’

’

%

3ydApxq2 ´ 2xdApxqdApyq

3ydApxqdApyq ´ 2xdApyq2

9xdApxq2 ` 4dApyq2

4xdApyq ´ dApxqdApyq ´ 6ydApxq

8ydApyq ` 12x2dApxq ` 3xdApxq2

4.8. Let us prove corollary 1.6. We set B “ OpXq. By theorem 1.4, we need to prove
the corresponding properties for the OpXq-module Ωp2q

B . By [11, Theorem 9], one knows
that Ωp2q

Bx
– Ωp2q

B bB Bx for every point x P X

˝ Since the noetherian ring B is regular if and only if Bx is regular for every point
x P X, [3, Proposition 4.1] proves assertion (2).

˝ From [1, Theorem 4.3], following the same argument, we also deduce that X is normal
if and only if Ωp2q

Bx
is torsionfree for every point x P X. We conclude the proof of the first

equivalence in assertion (1) by applying (4.3) to M “ Ωp2q

B . The last equivalence in
assertion (1) directly follows from lemma 4.1.

Example 4.9. Let k be a field of characteristic zero. Let us consider the polynomial
f “ x3

1 `x3
2 `x3

3 in the ring krx1, x2, x3s with associated surface H Ă A3
k. It is well-known

that this k-variety is a normal variety with a singular point at the origin which is not a
rational singularity. Let us also note that its tangent space is reduced, as every normal hy-
persurface of an affine space. In particular, W 1

OpHq is torsionfree, i.e., there is no nontrivial
isobaric function on L8pXq with weight 1 which are nilpotent. Indeed, by subsection 3.2,
we know that it means that Ω1

OpHq is torsionfree; this property is implied by the normality
of H (see [6, Corollary 9.8]). There also is no nontrivial nilpotent isobaric function on
L8pXq with weight 2 by corollary 1.6. This observation can also be checked by a direct
computation. Indeed, the algorithms introduced in [9] confirms this result. Moreover,
with this tool, we observe for example that the regular function induced by the polynomial
g :“ x2

10x20x21x30x32 ´ x10x11x
2
20x30x32 ` x2

10x20x21x
2
31 ´ x10x11x

2
20x

2
31 ´ x2

10x20x22x30x31 ´

x2
10x

2
21x30x31`x10x12x

2
20x30x31`x2

11x
2
20x30x31`x10x11x20x22x

2
30`x10x11x

2
21x

2
30´x10x12x20x21x

2
30´

x2
11x20x21x

2
30 induces a nilpotent function on L8pXq (see lemma 4.1); but it is isobaric

with weight 3.
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