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Abstract. Let H be a division ring of finite dimension over its center, let H[T ] be the ring of
polynomials in a central variable over H, and let H(T ) be its quotient skew field. We show that
every intermediate division ring between H and H(T ) is itself of the form H(f), for some f in the
center of H(T ). This generalizes the classical Lüroth’s theorem. More generally, we extend Igusa’s
theorem characterizing the transcendence degree 1 subfields of rational function fields, from fields
to division rings.

1. Introduction

Let K be an arbitrary field and let K(X) be the field of rational functions over K. Lüroth’s
theorem states that every intermediate field K ⊂ F ⊆ K(X) is itself a rational function field over
K. The theorem was first proven for K = C by Lüroth in [18], and for a general field K by Steinitz
in [23]. This result is foundational for general field theory and for the theory of algebraic curves,
see [22, §1.3]. The theorem was generalized to transcendence degree 1 subfields of rational function
fields in any number of variables by Gordan in [8] for fields of characteristic 0, and in general by
Igusa in [10]. Over the years, various proofs, employing different approaches, have been given to
these results, e.g., in [3, p. 106], [21], [11], [19].

In the present work, we study Lüroth’s and Igusa’s theorems in the more general context of
division rings.

Let H be a division ring (a.k.a. a skew field, or a division algebra over its center field), and
let H[T ] be the ring of polynomials over H in a central variable T . The ring H[T ] is an Ore
domain, hence admits a unique quotient skew field H(T ). The arithmetic of the ring H[T ] (and
more generally, of skew polynomial rings) is well-studied (see the classical works [20], [9], and the
modern works of Lam and Leroy [13], [14], [15], [16], [17], for example), however the study of the
quotient skew field H(T ) is not as expansive. Our main result is the following one, whose first part
generalizes Lüroth’s theorem, and its second part generalizes Igusa’s theorem.

Theorem 1.1. Let H be a division ring of finite dimension over its center Z(H), let n be a positive
integer and let H ⊆ L ⊆ H(T1, . . . , Tn) be an intermediate division ring.

(1) Assume n = 1 and L ̸= H. Then there exists f ∈ Z(H)(T1) \ Z(H) such that L = H(f).

(2) Assume there is g ∈ Z(H)(T1, . . . , Tn) such that L/H(g) is algebraic and such that g is not
algebraic over H. Then there exists f ∈ Z(H)(T1, . . . , Tn) \ Z(H) such that L = H(f).

Here T1, . . . , Tn denote independent central variables and H(f) denotes the division ring genera-
ted by f over H inside H(T1, . . . , Tn) – the terminology and notations are reviewed in detail in
§2.

In order to prove the theorem, we first prove several claims concerning extensions of division
rings, that eventually allow us to deduce the theorem from the classical, commutative version of it.
This is done in §3.

After concluding the proof of Theorem 1.1, we turn out attention to the more general skew
polynomial ring H[T, σ], where σ is an automorphism of the division ring H. In the present
context, it is natural to ask whether a version of Lüroth’s theorem holds for the quotient skew
field H(T, σ) of H[T, σ]. In the case where σ is an inner automorphism, we observe that such a
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version immediately follows from our main result, see Remark 3.5. However, the case where σ is
an arbitrary automorphism seems more difficult, even in the simplest case where H itself is a field
and σ is of order 2. In §4, we consider the skew polynomial ring C[T, σ], where σ is the complex
conjugation, and its quotient skew field C(T, σ), and study the intermediate division rings between
C and C(T, σ). We prove that any intermediate division ring C ⊆ D ⊆ C(T, σ) is of the form
C(f), provided that D is σ-invariant, see Definition 4.2 and Theorem 4.4. However, we observe
that σ-invariance is only a sufficient condition for D to be of this form, not a necessary one, see
Proposition 4.6. It remains an open question whether Lüroth’s theorem holds unconditionally for
C(T, σ), and more generally for skew fields of the form H(T, σ), see also Example 4.8. Another open
question is whether Theorem 1.1 holds for division rings of infinite dimension over their center.

Acknowledgments. We thank the anonymous referee for his/her comments, and in particular
for providing us with Example 4.8. We thank Adam Chapman for his help with Lemma 2.2.
This work fits into Project TIGANOCO (Théorie Inverse de GAlois NOn COmmutative), which is
funded by the European Union within the framework of the Operational Programme ERDF/ESF
2014-2020.

2. Preliminaries

In this section, we collect the basic material on division rings which will be used in the sequel.
A division ring is a (unital, associative) ring H in which every non-zero element is invertible.

Given a non-zero element b of a division ringH, the conjugation by b inH is an inner automorphism
of H, denoted by IH(b), and we let Inn(H) denote the group of all inner automorphisms of H.

For the next three items, we fix an extension L/H of division rings (i.e., H ⊆ L).
• The degree [L : H] of L/H is the dimension of the (left) H-linear space L and L/H is finite if
[L : H] <∞. We also say that H is centrally finite if H is a finite extension of its center Z(H).
• Given a subset S of L, we let H(S) denote the intersection of all division rings contained in L
and which contain both H and S, and we simply write H(x) if S = {x}. We then say that an
element x of L is algebraic over H if H(x)/H is finite and that L/H is algebraic if every element
of L is algebraic over H.
• Letting Aut(L/H) denote the group of all automorphisms of L fixing H point-wise, we say that
L/H is outer if Inn(L) ∩ Aut(L/H) = {idL}. Equivalently, if CL(H) denotes the centralizer of H
in L, i.e., CL(H) = {x ∈ L : xy = yx (y ∈ H)}, then L/H is outer if and only if CL(H) equals the
center Z(L) of L. In particular, if L/H is outer, then Z(H) ⊆ Z(L).

Lemma 2.1. Let L/H be an outer extension of division rings.

(1) The extensions L/F and F/H are outer for every intermediate division ring H ⊆ F ⊆ L.

(2) Assume H is centrally finite and L/H is algebraic. Then Z(L)/Z(H) is algebraic.

Proof. (1) First, if IL(a) (a ∈ L \ {0}) is in Aut(L/F ), then IL(a) ∈ Aut(L/H). As L/H is outer,
we get IL(a) = idL. Next, fix a ∈ F \ {0} such that IF (a) ∈ Aut(F/H). Then IL(a) ∈ Aut(L/H)
and, as L/H is outer, we get that IL(a) = idL. In particular, IF (a) = idF .

(2) Fix x ∈ Z(L). As L/H is algebraic, x is in some intermediate division ring H ⊆ F ⊆ L with
F/H finite. Then, as H is centrally finite, F/Z(H) is finite. Thus F ∩Z(L) is a division ring which
contains Z(H) and x, which is contained in Z(L) and which is a finite extension of Z(H). □

Lemma 2.2. Let H ⊆ L be division rings with L centrally finite. Then H is centrally finite.

Comments on proof. The statement is well-known to experts but the authors could not find an
explicit reference for it in the literature. For the sake of completeness, we provide a proof of the
lemma in §A. □

2



A non-zero ring R with no zero divisor is a right Ore domain if, for any x, y ∈ R \ {0}, there
exist r, s ∈ R \ {0} with xr = ys. If R is a right Ore domain, there is a division ring H which
contains R and every element of which can be written as ab−1 with a ∈ R and b ∈ R \ {0} (see,
e.g., [7, Theorem 6.8]). Moreover, H is unique up to isomorphism (see, e.g., [4, Proposition 1.3.4]).

Given a ring H and an automorphism σ of H, the polynomial ring H[T, σ] is the ring of all
polynomials of the form a0 + a1T + · · · + anT

n with n ≥ 0 and a0, . . . , an ∈ H, whose addition is
defined component-wise and whose multiplication is given by the usual rule( n∑

i=0

aiT
i

)
·
( m∑

j=0

bjT
j

)
=

n+m∑
k=0

( k∑
ℓ=0

aℓσ
ℓ(bk−ℓ)

)
T k.

In the sense of Ore (see [20]), the ring H[T, σ] is the polynomial ring H[T, σ, δ] in the variable T ,
where the σ-derivation δ is the zero derivation.

For the rest of this section, we fix a division ring H. Then H[T, σ] has no zero divisors, as the
degree is additive on products. Moreover, H[T, σ] is a right Ore domain (see, e.g., [7, Theorem 2.6
and Corollary 6.7]). The unique division ring which contains H[T, σ] and each element of which
can be written as ab−1 with a ∈ H[T, σ] and b ∈ H[T, σ] \ {0} is then denoted by H(T, σ).

If σ = idH , we write H[T ] and H(T ) for simplicity, and the variable T is a central element
of H(T ). One can iteratively construct polynomial rings in several central variables over H, by
putting H[T1, T2] = H[T1][T2], H[T1, T2, T3] = H[T1, T2][T3], and so on. As the variables are central,
the order in which they are added does not change the ring obtained. Furthermore, by an easy
induction, the ring H[T1, . . . , Tn] in n central variables over H is a right Ore domain for every n ≥ 1.
The unique division ring which contains H[T1, . . . , Tn] and each element of which can be written
as ab−1 with a ∈ H[T1, . . . , Tn] and b ∈ H[T1, . . . , Tn] \ {0} is then denoted by H(T1, . . . , Tn). In
the sequel, we will constantly use the equalities H(T1, . . . , Tn, Tn+1) = H(T1, . . . , Tn)(Tn+1) and
Z(H(T1, . . . , Tn)) = Z(H)(T1, . . . , Tn), and that H(T1, . . . , Tn) is centrally finite if H is (n ≥ 1).
See, e.g., [1, Propositions 2 and 3] for more details.

We also consider the division ring H((T )) of Laurent series of the form
∑

i≥i0
aiT

i, where i0 ∈ Z
and ai ∈ H for i ≥ i0, whose addition and multiplication are defined component-wise and by(∑

i≥i0

aiT
i

)(∑
i≥i1

biT
i

)
=

∑
i≥i0+i1

( i−i0−i1∑
ℓ=0

ai0+ℓ bi−i0−ℓ

)
T i,

respectively. Since H[T ] is a right Ore domain contained in H((T )), we have H(T ) ⊆ H((T )). See,
e.g., [4, §2.3] for more details on division rings of Laurent series.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we will require the next four lemmas. The first one characterizes finite
outer extensions of centrally finite division rings.

Lemma 3.1. Let H be a centrally finite division ring and L a finite extension of H with Z(H) ⊆
Z(L). The next three conditions are equivalent:

(i) the unique Z(H)-linear map ψ : H ⊗Z(H) Z(L) → L which fulfills ψ(x ⊗ y) = xy for every
(x, y) ∈ H × Z(L) is an isomorphism of Z(H)-algebras,

(ii) L/H is outer,

(iii) [Z(L) : Z(H)] = [L : H].

Proof. First, as the map {
H × Z(L) → L

(x, y) 7→ xy
3



is Z(H)-bilinear, ψ is well-defined, and it is a morphism of Z(H)-algebras. Moreover, ψ is injective
(see, e.g., [12, Proposition 2.36]). Furthermore, as

dimH(Im(ψ))× [H : Z(H)] = dimZ(L)(Im(ψ))× [Z(L) : Z(H)]

and as the left-hand side is finite, [Z(L) : Z(H)] is also finite and hence dimH(Im(ψ)) = [Z(L) :
Z(H)]. Then (i) ⇔ (iii) is clear. Next, the centralizer of Im(ψ) in L is the centralizer CL(H) of
H in L. As L is centrally finite, the double centralizer theorem (see, e.g., [12, Theorem 2.43]) then
yields [L : Z(L)] = [CL(H) : Z(L)]× dimZ(L)(Im(ψ)). Hence, (i) ⇔ (ii), as needed. □

Our second lemma is a variant of the first one.

Lemma 3.2. Let L/H be an outer extension of division rings such that L is centrally finite.
Then the unique Z(H)-linear map ψ : H ⊗Z(H) Z(L) → L which fulfills ψ(x ⊗ y) = xy for every
(x, y) ∈ H × Z(L) is an isomorphism of Z(H)-algebras.

Proof. First, Z(H) ⊆ Z(L) as L/H is outer. Then, as in the proof of Lemma 3.1, the map ψ is
a well-defined monomorphism of Z(H)-algebras. Moreover, as L is centrally finite, H is centrally
finite, by Lemma 2.2. Furthermore, Im(ψ) is a ring with no zero divisors and a Z(L)-linear space
with finite dimension [H : Z(H)]. Hence, Im(ψ) is a division ring (see, e.g., [4, Proposition 3.1.2]),
whose center equals Z(L). Using that L/Z(L) is finite, we get that L/Im(ψ) is finite and that
Im(ψ) is centrally finite. Moreover, since L/H is outer and since Im(ψ) is an intermediate division
ring, L/Im(ψ) is outer, by Lemma 2.1(1). Thus, L = Im(ψ) by Lemma 3.1. □

Our third lemma shows that every extension of the form H(T1, . . . , Tn)/H is outer.

Lemma 3.3. (1) Let L/H be an outer extension of division rings. Then L((T ))/H is outer.

(2) The extension H(T1, . . . , Tn)/H is outer for every n ≥ 1.

Proof. (1) Let a ∈ L((T )) be such that ac = ca for every c ∈ H. Set a =
∑

i≥i0
aiT

i, where i0 ∈ Z
and ai ∈ L for every i ≥ i0. As ac = ca for every c ∈ H, we have cai = aic for every c ∈ H, i.e.,
every ai lies in the centralizer CL(H) of H in L. As the extension L/H is outer, we actually have
CL(H) = Z(L) and hence a ∈ Z(L)((T )) ⊆ Z(L((T ))), as needed.

(2) We proceed by induction on n ≥ 1. For n = 1, we get from (1) that H((T1))/H is outer. As
H(T1) is an intermediate division ring, Lemma 2.1(1) yields that H(T1)/H is outer. Now, fix n ≥ 1
and assume H(T1, . . . , Tn)/H is outer. We may then use (1) to get that H(T1, . . . , Tn)((Tn+1))/H
is outer. Since H(T1, . . . , Tn)(Tn+1) is an intermediate division ring which equals H(T1, . . . , Tn+1),
Lemma 2.1(1) yields that H(T1, . . . , Tn+1)/H is outer, thus ending the proof. □

Our last lemma describes the division ring generated by a central element of H(T1, . . . , Tn), if H
is centrally finite.

Lemma 3.4. Let H be a centrally finite division ring, n ≥ 1 and f ∈ Z(H)(T1, . . . , Tn). Then
the unique Z(H)-linear map ψ : H ⊗Z(H) Z(H)(f) → H(f) which fulfills ψ(x⊗ y) = xy for every
(x, y) ∈ H × Z(H)(f) is an isomorphism of Z(H)-algebras. In particular, Z(H(f)) = Z(H)(f).

Proof. First, by Lemma 2.1(1) and Lemma 3.3(2), the extension H(f)/H is outer. In particular,
Z(H) ⊆ Z(H(f)). Moreover, as f ∈ Z(H)(T1, . . . , Tn), we have f ∈ Z(H(f)) and hence the
inclusions Z(H) ⊆ Z(H)(f) ⊆ Z(H(f)) hold.

Now, as in the proof of Lemma 3.1, the map ψ is well-defined and injective. Moreover, as
Z(H)(f) ⊆ Z(H(f)), it is a morphism of Z(H)-algebras. Furthermore, Im(ψ) is both a ring with
no zero divisors and a Z(H)(f)-linear space with finite dimension [H : Z(H)]. Hence, Im(ψ)
is a division ring, which is contained in H(T1, . . . , Tn) and which contains H and f . Therefore,
H(f) = Im(ψ), thus ending the proof. □
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Proof of Theorem 1.1. We prove each statement separately, by reducing to the commutative case.

(1) First, by Lemma 2.1(1) and 3.3(2), the extensions H(T1)/L and L/H are outer and, hence,
Z(H) ⊆ Z(L) ⊆ Z(H)(T1). We may then consider the unique Z(H)-linear map ψ : H⊗Z(H)Z(L) →
L which fulfills ψ(x ⊗ y) = xy for every (x, y) ∈ H × Z(L). Moreover, since H(T1) is centrally
finite, L is centrally finite by Lemma 2.2. We may then apply Lemma 3.2 to get

L = Im(ψ). (3.1)

Next, assume Z(L) = Z(H). Then Im(ψ) = H, i.e., L = H by (3.1), which cannot hold. Finally, by
Lüroth’s theorem and as Z(L) ̸= Z(H), there is f ∈ Z(H)(T1) \Z(H) such that Z(L) = Z(H)(f).
Hence, by Lemma 3.4, we get Im(ψ) = H(f), i.e., L = H(f) by (3.1).

(2) First, by Lemma 2.1(1) and 3.3(2), the extensions H(T1, . . . , Tn) and L/H are outer and,
hence, Z(H) ⊆ Z(L) ⊆ Z(H)(T1, . . . , Tn). We may then consider the unique Z(H)-linear map
ψ : H ⊗Z(H) Z(L) → L which fulfills ψ(x ⊗ y) = xy for every (x, y) ∈ H × Z(L). Moreover, as
H(T1, . . . , Tn) is centrally finite, L is centrally finite (see Lemma 2.2). Lemma 3.2 then yields

L = Im(ψ). (3.2)

Moreover, H(g) is centrally finite (again by Lemma 2.2) and, by Lemma 2.1(2), the extension Z(L)
of Z(H(g)) = Z(H)(g) (see Lemma 3.4 for the last equality) is algebraic. Furthermore, if g is
algebraic over Z(H), then Z(H)(g)/Z(H) is finite. As H(g) is centrally finite, we get that H(g)/H
is finite, which cannot hold. Hence, Z(L)/Z(H) has transcendence degree 1. We may then apply
Igusa’s generalization of Lüroth’s theorem to get that there is f ∈ Z(H)(T1, . . . , Tn) \ Z(H) with
Z(L) = Z(H)(f). Hence, by Lemma 3.4, we get Im(ψ) = H(f), i.e., L = H(f) by (3.2). □

Remark 3.5. Given a division ring H and σ ∈ Inn(H), say σ = IH(b) with b ∈ H \ {0}, we let
H[b−1T ] denote the intersection of all subrings of H[T, σ] containing H and b−1T . Then

H[b−1T ] = {a0 + a1(b
−1T ) + · · ·+ an(b

−1T )n : n ≥ 0, a0, . . . , an ∈ H} = H[T, σ] (3.3)

and, as the (b−1T )n’s (n ≥ 0) are linearly independent over H, the ring H[b−1T ] is the polynomial
ring in the central variable b−1T over H. As H(T, σ) = H(b−1T ) by (3.3), we get the next extension
of Theorem 1.1:

Let H be a centrally finite division ring and let n be a positive integer. Fix σ1 ∈ Inn(H) and, for
every i ∈ {2, . . . , n}, fix σi ∈ Inn(H(T1, σ1) · · · (Ti−1, σi−1)). Let H ⊆ L ⊆ H(T1, σ1) · · · (Tn, σn) be
an intermediate division ring.

(1) Assume n = 1 and L ̸= H. Then there is f ∈ Z(H(T1, σ1)) \ Z(H) such that L = H(f).

(2) Assume there is g ∈ Z(H(T1, σ1) · · · (Tn, σn)) such that L/H(g) is algebraic and such that g is
not algebraic over H. Then there is f ∈ Z(H(T1, σ1) · · · (Tn, σn)) \ Z(H) such that L = H(f).

4. The case of C(T, σ)

In this section, we consider the division ring C(T, σ), where σ denotes the complex conjugation.
Let H denote Hamilton’s quaternions algebra, i.e., H = R ⊕ Ri ⊕ Rj ⊕ Rk where i2 = j2 = k2 =
ijk = −1. From now on, we view C as the subring R⊕ Ri of H.

Lemma 4.1. Consider the map

ϕ :

{
C[T, σ] −→ H[X]

a0 + a1T + · · ·+ anT
n 7−→ a0 + a1jX + · · ·+ anj

nXn .

Then ϕ is a ring homomorphism, which is injective and which fixes C point-wise.
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Proof. Clearly, ϕ fixes C point-wise and ϕ is both additive and injective. Hence, to conclude
the proof, it suffices to check that ϕ is multiplicative on monomials. To that end, consider two
monomials aTn and bTm, with n,m ∈ N and a, b ∈ C. By the definition of ϕ, we have

ϕ(aTnbTm) = ϕ(aσn(b)Tn+m) = aσn(b)jn+mXn+m. (4.1)

By considering the four different possible residues of n modulo 4, one checks that σn(b)jn = jnb
for all n ≥ 0. Thus, (4.1) yields ϕ(aTnbTm) = ajnbjmXn+m = ajnXnbjmXm = ϕ(aTn)ϕ(bTm), as
needed. □

By, e.g., [7, Proposition 6.3] and since C[T, σ] is a right Ore domain, the monomorphism ϕ from
Lemma 4.1 extends to the following monomorphism:

ϕ :

{
C(T, σ) → H(X)
PQ−1 7→ ϕ(P )ϕ(Q)−1 .

Now, we extend σ to H by setting

σ(a+ bi+ cj + dk) = a− bi+ cj − dk

for a, b, c, d ∈ R. Then σ is an automorphism of H of order 2. Moreover, we may extend σ to an
automorphism of order 2 of H[X], by setting

σ(a0 + a1X + · · ·+ anX
n) = σ(a0) + σ(a1)X + · · ·+ σ(an)X

n

for n ≥ 0 and a0, . . . , an ∈ H. Finally, σ extends to the next automorphism of order 2 of H(X):

σ :

{
H(X) → H(X)
PQ−1 7→ σ(P )σ(Q)−1 .

Definition 4.2. We say that a subset S of H(X) is σ-invariant if σ(S) = S.

Example 4.3. Given a subset S of C(T, σ), we have ϕ(C(S)) = C(ϕ(S)) and, if ϕ(S) is σ-invariant,
so is ϕ(C(S)). Using that σ(i) = −i and that σ fixes ϕ(R(T )) point-wise, we have, in particular,
that ϕ(C(S)) is σ-invariant for every subset S of C(T, σ) which is contained in R(T ) ∪ iR(T ).

The next result, which is a partial Lüroth’s theorem over C(T, σ), is the aim of this section:

Theorem 4.4. Let C ⊆ L ⊆ C(T, σ) be an intermediate division ring such that ϕ(L) is σ-invariant.
Then there is v ∈ C(T, σ) such that L = C(v).

The key idea for proving Theorem 4.4 is to apply Theorem 1.1 to a suitable extension of L inside
H(X). We will first need the following lemma:

Lemma 4.5. (1) For every f ∈ C(T, σ), we have jϕ(f) = σ(ϕ(f))j.

(2) We have j ̸∈ ϕ(C(T, σ)). In particular, the ϕ(L)-linear space ϕ(L)+ϕ(L)j has dimension 2 for
every division ring L contained in C(T, σ).
(3) Let L be a division ring contained in C(T, σ) such that ϕ(L) is σ-invariant. Then ϕ(L)+ϕ(L)j
is a division ring.

(4) For i ∈ {1, 2}, fix a division ring Li contained in C(T, σ). Assume ϕ(L1) ⊆ ϕ(L2) and ϕ(L2) +
ϕ(L2)j ⊆ ϕ(L1) + ϕ(L1)j. Then L1 = L2.

Proof of Lemma 4.5. (1) By additivity and the definition of ϕ, it suffices to consider the case where
f is a monomial aTn (n ∈ N, a ∈ C). As jϕ(f) = jajnXn and σ(ϕ(f))j = σ(ajn)Xnj =
σ(a)jnXnj = σ(a)jn+1Xn, it suffices to check that ja = σ(a)j, which was already mentioned in
the proof of Lemma 4.1.

(2) If j ∈ ϕ(C(T, σ)), there are non-negative integers n,m and elements a0, . . . , an, b0, . . . , bm of C
such that b0 + b1jX + · · ·+ bmj

mXm ̸= 0 and such that

a0 + a1jX + · · ·+ anj
nXn = j(b0 + b1jX + · · ·+ bmj

mXm).
6



Therefore, aℓ = jbℓ for 0 ≤ ℓ ≤ n = m, i.e., every coefficient bℓ equals 0, which cannot hold.

(3) Fix a, b, c, d ∈ L. By (1), we have

(ϕ(a) + ϕ(b)j)(ϕ(c) + ϕ(d)j) = (ϕ(a)ϕ(c)− ϕ(b)σ(ϕ(d))) + (ϕ(a)ϕ(d) + ϕ(b)σ(ϕ(c)))j.

As we assumed that ϕ(L) is σ-invariant, ϕ(a)ϕ(c)− ϕ(b)σ(ϕ(d)) and ϕ(a)ϕ(d) + ϕ(b)σ(ϕ(c)) are in
ϕ(L). Hence, ϕ(L) + ϕ(L)j is a ring, which has no zero divisors. As ϕ(L) + ϕ(L)j is also a finite
dimensional ϕ(L)-linear space, it is in fact a division ring (see, e.g., [4, Proposition 3.1.2]).

(4) By (2), we have

2 = dimϕ(L1) ϕ(L1) + ϕ(L1)j ≥ dimϕ(L1) ϕ(L2) + ϕ(L2)j
= [ϕ(L2) : ϕ(L1)] · dimϕ(L2) ϕ(L2) + ϕ(L2)j
= 2[ϕ(L2) : ϕ(L1)].

Hence, ϕ(L1) = ϕ(L2), i.e., L1 = L2. □

Proof of Theorem 4.4. First, let us introduce the following map:

τ :

{
H −→ H

a+ bi+ cj + dk 7−→ a+ bi− cj − dk
.

Then τ is an automorphism of H of order 2. We may extend τ to an automorphism of H[X] of
order 2, by setting

τ(a0 + a1X + · · ·+ anX
n) = τ(a0)− τ(a1)X + · · ·+ (−1)nτ(an)X

n (n ≥ 0, a0, . . . , an ∈ H).

As H[X] is a right Ore domain, we may extend τ to an automorphism of H(X) of order 2, by setting

τ(PQ−1) = τ(P )τ(Q)−1 (P ∈ H[X], Q ∈ H[X] \ {0}).
Now, consider the ϕ(L)-linear space ϕ(L) + ϕ(L)j. Since τ fixes ϕ(C(T, σ)) point-wise and

τ(j) = −j, we have τ(ϕ(a) + ϕ(b)j) = ϕ(a) + ϕ(−b)j for a, b ∈ L. In particular,

τ(ϕ(L) + ϕ(L)j) = ϕ(L) + ϕ(L)j and ϕ(L) = {u ∈ ϕ(L) + ϕ(L)j : τ(u) = u}. (4.2)

Moreover, as ϕ(L) is σ-invariant, Lemma 4.5(3) yields that ϕ(L) + ϕ(L)j is a division ring, which
is contained in H(X) and which contains ϕ(C) = C and j, i.e., H. By Theorem 1.1, we then have

ϕ(L) + ϕ(L)j = H(f) (4.3)

for some f ∈ R(X). Let us fix g, h ∈ R(X2) such that

f = g + hX. (4.4)

Since τ(X) = −X and τ fixes R point-wise, we have τ(g) = g and τ(h) = h. Hence,

τ(f) = g − hX (4.5)

and, by (4.2) and (4.3), we get that τ(f) ∈ ϕ(L) + ϕ(L)j. As g = (f + τ(f))/2 by (4.4) and (4.5),
we get that g ∈ ϕ(L) + ϕ(L)j and, as g is invariant under τ , we may apply (4.2) to get

g ∈ ϕ(L). (4.6)

In particular, jhX = j(f −g) ∈ ϕ(L)+ϕ(L)j. Since τ(jhX) and jhX coincide, (4.2) actually gives

jhX ∈ ϕ(L). (4.7)

Next, as f ∈ R(X), f is central in H(f). As τ(H(f)) = H(f) by (4.2) and (4.3), we get that τ(f)
is central in H(f), i.e., τ(f) ∈ R(f) (see Lemma 3.4). As τ fixes R point-wise, the restriction of τ
to R(f) is an R-automorphism of order ≤ 2. Assume f is algebraic over R. Then ϕ(L)+ϕ(L)j = H
by (4.3). As H = ϕ(C) + ϕ(C)j and as ϕ(C) ⊆ ϕ(L), we may apply Lemma 4.5(4) to get that
L = C.
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Therefore, assume f is transcendental over R. Hence, τ |R(f) is a Möbius transformation of order
at most 2. First, assume τ(f) = f , i.e., g − hX = g + hX by (4.4) and (4.5). Hence, h = 0 and

ϕ(L) + ϕ(L)j = H(g) (4.8)

by (4.3). Moreover, as g = ϕ(g(−T 2)) ∈ ϕ(R(T )), we get that C(g) = ϕ(C(g(−T 2))) is σ-invariant
(see Example 4.3). We may then apply Lemma 4.5(3) to get that C(g)+C(g)j is a division ring. But
C(g)+C(g)j contains C, g and j, i.e., contains ϕ(L)+ϕ(L)j by (4.8). As (4.6) yields C(g) ⊆ ϕ(L),
we may then apply Lemma 4.5(4) to get L = C(g(−T 2)).

From now on, assume τ(f) ̸= f . Set

τ(f) =
af + b

cf + d
(4.9)

with a, b, c, d ∈ R satisfying ad− bc ̸= 0. We then have

f = τ2(f) =
(a2 + bc)f + b(a+ d)

c(a+ d)f + cb+ d2
. (4.10)

First, assume c = 0, in which case (4.9) and (4.10) reduce to

τ(f) =
af + b

d
and f =

a2f + b(a+ d)

d2
,

respectively. In particular, from the second equality, we get that f(1 − a2/d2) is a real number,
which is possible only if a2 = d2. If a = d, then the second equality yields further b = 0. Hence,
τ(f) = f by the first equality, which cannot hold. Therefore, a = −d and the first equality yields
τ(f) = −f − ba−1. Then, by (4.4) and (4.5), it follows that g = −b(2a)−1 ∈ R. Thus

ϕ(L) + ϕ(L)j = H(hX) (4.11)

by (4.3) and (4.4). Moreover, as jhX = ϕ(Th(−T 2)) ∈ ϕ(R(T )), we get that C(jhX) = ϕ(C(Th(−T 2)))
is σ-invariant (see Example 4.3). Therefore, Lemma 4.5(3) yields that C(jhX) + C(jhX)j is a di-
vision ring. But C(jhX) +C(jhX)j contains C, jhX and j, i.e., contains ϕ(L) + ϕ(L)j by (4.11).
As (4.7) yields C(jhX) ⊆ ϕ(L), we get L = C(Th(−T 2)) from Lemma 4.5(4).

Finally, assume c ̸= 0. Then divide a, b and d by c to assume that c = 1. We then have

τ(f) =
af + b

f + d
and f =

(a2 + b)f + b(a+ d)

(a+ d)f + b+ d2
,

by (4.9) and (4.10). By the second equality, we get d = −a and the first equality then yields

τ(f) =
af + b

f − a
.

In particular,

τ(f − a) =
af + b− a(f − a)

f − a
=
b+ a2

f − a
.

As a ∈ R, we have R(f) = R(f − a) and, hence, H(f) = H(f − a). Therefore, we may replace f
with f − a to assume τ(f) = 1/(αf), where α = 1/(b+ a2). Set f = P (X)/Q(X), where P and Q
are coprime polynomials with real coefficients. Then

P (−X)

Q(−X)
= τ(f) =

1

αf
=

1

α
· Q(X)

P (X)
,

i.e., αP (−X)P (X) = Q(−X)Q(X). In particular, αP (0)2 = Q(0)2. If P (0) = 0, then we also have
Q(0) = 0, which cannot hold since P and Q are coprime. Therefore, α = Q(0)2/P (0)2 > 0.
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Given a square root
√
α of α in R, set

v =
1−

√
αf

1 +
√
αf

· j ∈ H(f) = ϕ(L) + ϕ(L)j.

Then

τ(v) =
(1−

√
α(αf)−1)

1 +
√
α(αf)−1

· (−j) = (αf −
√
α)

αf +
√
α

· (−j) =
(
1−

√
αf

)
1 +

√
αf

· j = v,

thus yielding C(v) ⊆ ϕ(L) by (4.2). If ϕ(L) + ϕ(L)j ⊆ C(v) + C(v)j, then Lemma 4.5(4) yields
L = C(w), where w is the unique element of C(T, σ) fulfilling ϕ(w) = v. To get the desired inclusion,
note first that, as f ∈ R(X) and as

√
α ∈ R, we have σ(v) = v. Therefore, C(v) is σ-invariant and,

by Lemma 4.5(3), we get that C(v) + C(v)j is a division ring. As ϕ(L) + ϕ(L)j = H(f) by (4.3)
and as H ⊆ C(v) + C(v)j, it then suffices to show that f ∈ C(v) + C(v)j. But, since

f 7→ 1−
√
αf

1 +
√
αf

is a Möbius transformation of the rational function field R(f), there are a1, a2, a3, a4 ∈ R such that

f =

(
a1

1−
√
αf

1 +
√
αf

+ a2

)(
a3

1−
√
αf

1 +
√
αf

+ a4

)−1

= (a2 − a1vj)(a4 − a3vj)
−1

and, since C(v) + C(v)j is a division ring, we have (a2 − a1vj)(a4 − a3vj)
−1 ∈ C(v) + C(v)j. □

The following proposition shows that σ-invariance is not necessary in general for intermediate
division rings C ⊆ L ⊆ C(T, σ) to be of the form C(v) with v ∈ C(T, σ):

Proposition 4.6. Set v = T + iT 3 ∈ C(T, σ). Then ϕ(C(v)) is not σ-invariant.

Proof. First, note that ϕ(v) = jX + ij3X3 = jX − ijX3 = jX − kX3.
Now, assume ϕ(C(v)) is σ-invariant. Since ϕ(C(v)) = C(ϕ(v)) = C(jX − kX3) (see Example 4.3

for the first equality), we have σ(jX−kX3) = jX+kX3 ∈ C(jX−kX3). Therefore, C(jX−kX3)
contains jX = ϕ(T ). Consequently, C(v) contains T , i.e.,

C(v) = C(T, σ). (4.12)

Next, let R denote the intersection of all subrings of C[T, σ] which contain both C and v. Since
vi = −iv, we have

R = {a0 + a1v + · · ·+ anv
n : n ≥ 0, a0, . . . , an ∈ C}.

Moreover, since v has positive degree, the vn’s (n ≥ 0) are linearly independent over C. Therefore,
R is the polynomial ring C[v, σ]. In particular, C(v), which is the intersection of all division rings
contained in C(T, σ) and containing both C and v, equals C(v, σ). Hence, by, e.g., [2, lemme 2.3],
the center of C(v) equals R(v2) = R(T 2 + T 6). By (4.12), we then obtain

R(T 2) = R(T 2 + T 6). (4.13)

Finally, note that T 2 is a root of X3 + X − (T 2 + T 6) ∈ R(T 2 + T 6)[X] and that T 2 + T 6 is
transcendental over R. Considering a transcendental Y , it is easily checked that X3+X−Y has no
root in R(Y ), i.e., that X3+X−Y is irreducible over R(Y ). Consequently, R(T 2) = R(T 2+T 6)(T 2)
is a degree 3 extension of R(T 2 + T 6), which contradicts (4.13). □

To summarize, we have the following combination of Theorem 4.4 and Proposition 4.6:

Corollary 4.7. Let C ⊆ L ⊆ C(T, σ) be an intermediate division ring. For L to be of the form
C(v) with v ∈ C(T, σ), it is sufficient, but not necessary in general, that ϕ(L) is σ-invariant.
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Finding a precise, unconditional version of Lüroth’s Theorem for division rings of the form
D(T, σ) (where D is a division algebra) remains an open question. More generally, one may ask
for a precise version of Igusa’s Theorem for skew function fields of higher dimension. The following
example demonstrates another type of obstruction for such a theorem.

Example 4.8. Let R be the first Weyl algebra over the complex numbers C, with generators X,Y .
That is, R is the quotient of the free C-algebra in X,Y by the ideal ⟨XY −Y X − 1⟩. Let K be the
first Weyl skew field, that is, the quotient skew field of R. Then K has transcendence degree 2 over
C, in the sense of Gelfand-Kirillov (see [6]). The skew field K contains a (commutative) subfield L,
generated over C by elements a, b satisfying a2 − b3 = 1, by a theorem of Dixmier [5, Proposition
5.5], and such a subfield L is not generated over C by a single generator.

Appendix A. Proof of Lemma 2.2

Firstly, set Z(H) · Z(L) = {x1y1 + · · · + xnyn : n ≥ 1, x1, . . . , xn ∈ Z(H), y1, . . . , yn ∈ Z(L)}.
Then Z(H) · Z(L) contains Z(H) and Z(L), is contained in L, is a commutative ring, and is a
Z(L)-subspace of L. Moreover, Z(H) · Z(L) is an integral domain (since L is a division ring) and
dimZ(L) Z(H) · Z(L) ≤ dimZ(L) L <∞. Hence, Z(H) · Z(L) is a field.

Secondly, set H · Z(L) = {x1y1 + · · · + xnyn : n ≥ 1, x1, . . . , xn ∈ H, y1, . . . , yn ∈ Z(L)}.
Then H · Z(L) contains H and Z(L), is contained in L, is a ring, and is a Z(L)-subspace of L
with dimZ(L)H · Z(L) < ∞. In fact, H · Z(L) is a (Z(H) · Z(L))-subspace of L and we have
dimZ(H)·Z(L)H · Z(L) <∞. Moreover, Z(H) · Z(L) ⊆ Z(H · Z(L)).

Thirdly, let {ei}i∈I be a Z(H)-basis of H. We claim that {ei}i∈I is a (Z(H) · Z(L))-basis of
H · Z(L). Since dimZ(H)·Z(L)H · Z(L) <∞, we get that I is finite, as needed for the lemma.

To show the claim, we first show that the ei’s span H · Z(L) over Z(H) · Z(L). To that end, fix
n ≥ 1, x1, . . . , xn ∈ H and y1, . . . , yn ∈ Z(L). Then there is a finite subset J of I such that, for
k ∈ {1, . . . , n}, there are elements λk,j (j ∈ J) of Z(H) verifying xk =

∑
j∈J λk,jej . We then have

x1y1 + · · ·+ xnyn =

(∑
j∈J

λ1,jej

)
y1 + · · ·+

(∑
j∈J

λn,jej

)
yn =

∑
j∈J

(λ1,jy1 + · · ·+ λn,jyn)ej .

Finally, let {i1, . . . , in} ⊆ I and λ1, . . . , λn ∈ Z(H) ·Z(L) be such that λ1ei1 + · · ·+ λnein = 0, i.e.,

ei1λ1 + · · ·+ einλn = 0 (A.1)

(as Z(H) ·Z(L) ⊆ Z(H ·Z(L))). As (x, y) ∈ H × (Z(H) ·Z(L)) 7→ xy ∈ H ·Z(L) is Z(H)-bilinear,
there is a unique Z(H)-linear map ψ : H⊗Z(H)(Z(H)·Z(L)) → H ·Z(L) which fulfills ψ(x⊗y) = xy
for every (x, y) ∈ H × (Z(H) · Z(L)). Moreover, as Z(H) · Z(L) ⊆ Z(H · Z(L)), the map ψ is a
morphism of Z(H)-algebras and, by, e.g., [12, Proposition 2.36], it is injective. Therefore, by (A.1),
we have

ei1 ⊗ λ1 + · · ·+ ein ⊗ λn = 0. (A.2)

Now, fix Z(H)-linear maps f1, . . . , fn : Z(H) · Z(L) → Z(H) and, for j ∈ {1, . . . , n}, set

e∗ij :

{
H → Z(H)
ei 7→ δi,ij

,

where δi,ij denotes the Kronecker symbol. Since

F :

{
H × (Z(H) · Z(L)) → Z(H)

(x, y) 7→ e∗i1(x)f1(y) + · · ·+ e∗in(x)fn(y)

is Z(H)-bilinear, there is a unique Z(H)-linear map F̃ : H ⊗Z(H) (Z(H) · Z(L)) → Z(H) which

fulfills F̃ (x ⊗ y) = F (x, y) = e∗i1(x)f1(y) + · · · + e∗in(x)fn(y) for every (x, y) ∈ H × (Z(H) · Z(L)).
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By (A.2), we then have

0 = F̃ (ei1 ⊗ λ1 + · · ·+ ein ⊗ λn) = f1(λ1) + · · ·+ fn(λn).

In particular, fixing j ∈ {1, . . . , n} and setting f1 = · · · = fj−1 = fj+1 = · · · = fn = 0, we get
fj(λj) = 0. Fix a Z(H)-basis {ϵi}i∈I′ of Z(H) · Z(L) and, for i ∈ I ′, set

ϵ∗i :

{
Z(H) · Z(L) → Z(H)

ϵi′ 7→ δi,i′
.

As fj was arbitrary, we get ϵ∗i (λj) = 0 for every i ∈ I ′, i.e., λj = 0. This concludes the proof.
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commutatifs. (French). Israel J. Math., 249(2):617–650, 2022.

[3] Claude Chevalley. Introduction to the Theory of Algebraic Functions of One Variable. Mathematical Surveys,
No. VI. American Mathematical Society, New York, N. Y., 1951. xi+188 pp.

[4] Paul Moritz Cohn. Skew fields. Theory of general division rings. Encyclopedia of Mathematics and its Applica-
tions, 57. Cambridge University Press, Cambridge, 1995. xvi+500 pp.
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