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Abstract. This study concerns (not necessarily commutative)
Hecke rings associated with certain algebras and describes a formal
Dirichlet series with coefficients in the Hecke rings, which can be
used to generalize Shimura’s series. Considering the case of the
Heisenberg Lie algebra, an analog of the identity for Shimura’s se-
ries derived employing the rationality theorem, presented by Hecke
and Tamagawa, is established. Moreover, this analog recovers the
explicit formula for the pro-isomorphic zeta function of the Heisen-
berg Lie algebra shown by Grunewald, Segal and Smith.

1. Introduction

This study concerns Hecke rings introduced by Shimura [15]. A clas-
sical study of Hecke rings is the work by Hecke [6] and Tamagawa [18]
on the Hecke rings associated with the general linear groups. They
showed that these Hecke rings are commutative polynomial rings. Fur-
thermore, they defined formal power series with coefficients in these
Hecke rings, and showed their rationality. The results of this work
are summarized in [17, Chapter 3], where formal Dirichlet series with
coefficients in these Hecke rings were further introduced. Andrianov
[1], Hina–Sugano [7], Satake [12], and Shimura [16] studied Hecke rings
associated with classical groups, wherein they further developed the
work of Hecke [6] and Tamagawa [18]. In addition, other studies were
conducted on the Hecke rings associated with Jacobi and Chevalley
groups by Dulinsky [4] and Iwahori-Matsumoto [11], respectively.

As mentioned above, various studies have been carried out on Hecke
rings. However, the class of Hecke rings defined by Shimura is vast,
and only a small part of it has been studied to date.

From now on, an algebra implies an abelian group with a bi-additive
product (e.g., an associative algebra, a Lie algebra). Let L be an alge-
bra that is free of finite rank as an abelian group. Our previous work
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[9] introduced the Hecke rings RL and R̂L associated with L. For the
definition, see Section 2. In this study, we deal with the formal Dirich-

let series DL(s) and D̂L(s) with coefficients in RL and R̂L, respectively,
which are defined in Section 3.

The first result of this study is to show that the Euler product for-

mula for D̂L(s) holds, and to give a sufficient condition for DL(s) to
have the Euler product expansion (cf. Theorems 3.1 and 3.2).

If L = Zr is the free abelian Lie algebra of rank r, the Hecke ring

RZr and R̂Zr coincide with those treated by Hecke [6] and Tamagawa

[18]. Further, the formal Dirichlet series DZr(s) and D̂Zr(s) equal those
treated in [17, Chapter 3]. Thus, it can be said that our study gener-
alizes their study. We discuss them in Section 4.

Denote by H the Heisenberg Lie algebra, that is, the free nilpotent
Lie algebra of class 2 on two generators. The second result of this study

is the establishment of identities for DH(s) and D̂H(s), which is the

primary result of this study. Let θ̂ = (θ̂p)p be a family of indeterminates
indexed by all prime numbers p. The key idea for stating our main

theorem involves regarding R̂H as a module over the polynomial ring

R̂Z2 [θ̂]. The main theorem is as follows:

Theorem 1.1 (Theorem 5.12). There exists a formal Dirichlet series

Î2(θ̂; s) with coefficients in R̂Z2 [θ̂] satisfying the following identity:

Î2(θ̂; s) ·DH(s) = Î2(θ̂; s) · D̂H(s) = 1.

It is worth noting that this theorem is similar to Shimura’s Theorem
4.5 for the case r = 2. At the conclusion of Section 5.2, we estab-
lish that Theorem 1.1 recovers Shimura’s Theorem for r = 2 via the
endomorphism ϕ̂ introduced in Definition 5.10.

The proof is essentially done by using some results of our previous
study [8] which is described in Section 5.1. There is no great difficulty
in proving the claims stated in this study. Rather, it is important
to note a natural generalization of series of [6, 17, 18], and a concise
identity given for a formal Dirichlet series whose coefficients are not
always commutative (cf. Remark 5.14).

In [8, 9] and this study, the case of the Heisenberg Lie algebra is
considered as a first step. The author expects that many new Hecke
rings will appear in the class of the Hecke rings of this study. Further
study of these Hecke rings is now in progress by the author. In [10], the

author investigated the Euler factor of D̂L(s) at each prime number in
the case where L is a higher Heisenberg Lie algebra.
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Tamagawa [18], by using his Hecke theory, further investigated cer-
tain zeta functions, and proved that each of them is an entire function
and has a functional equation. However, even in the Hecke rings as-
sociated with the Heisenberg Lie algebra, no analogue has been found.
Further research is needed to find such applications to number theory.

It should be mentioned that our series DL(s) and D̂L(s) are related
to the zeta functions of groups and rings introduced by Grunewald, Se-
gal and Smith [5]. Let G be a torsion-free finitely generated nilpotent

group, and Ĝ its profinite completion. Denote by S in(G) (resp. S∧
n (G))

the family of subgroups H of G of index n such that there is an iso-

morphism H ∼= G of groups (resp. Ĥ ∼= Ĝ of topological groups). The
zeta functions ζ iG(s) and ζ

∧
G(s) of G were defined in [5] as follows:

ζ iG(s) =
∑
n>0

#S in(G)n−s, ζ∧G(s) =
∑
n>0

#S∧
n (G)n

−s,

where s is a complex variable.
As an analogue of them, one can define the zeta functions of L. Let

Ẑ be the profinite completion of Z, and set L̂ = L ⊗ Ẑ. Denote by
S in(L) (resp. S∧

n (L)) the family of subalgebras M of L of index n such

that there is an isomorphism M ∼= L as algebras (resp. M ⊗ Ẑ ∼=
L̂ as algebras over Ẑ). We set ain(L) = #S in(L) and a∧n(L) = #S∧

n (L)
for each n. The zeta functions ζ iL(s) and ζ∧L(s) of L are defined as
follows:

ζ iL(s) =
∑
n>0

ain(L)n
−s, ζ∧L(s) =

∑
n>0

a∧n(L)n
−s.

The zeta function ζ∧L(s) was also introduced in [5], and is called pro-
isomorphic zeta function ζ∧L(s) of L in [2] and [3]. Although there are
few papers on ζ iL(s), it is a natural analogue of ζ iG(s). We call ζ iL(s)
the isomorphic zeta function of L.

As we mention in Section 6, ζ iL(s) and ζ∧L(s) equal the coefficient-

wise images of DL(s) and D̂L(s) under the degree maps on RL and

R̂L, respectively. For the definition of the degree map on a Hecke ring,
see Section 2. Moreover, at the end of Section 6, we prove that our
Theorem 1.1 derives the explicit formulae for ζ iH(s) and ζ

∧
H(s) via the

degree map on R̂H as follows:

ζ iH(s) = ζ∧H(s) = ζ(2s− 2)ζ(2s− 3),

where ζ(s) is the Riemann zeta function.
This identity is essentially due to Grunewald, Segal and Smith [5,

Theorem 7.6]. Precisely, for the free nilpotent group F = Fc,g of class
c on g-generators, the identity ζ iF(s) = ζ∧F (s) and the explicit formulae
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for them were obtained. For the free nilpotent Lie algebra F = Fc,g of
class c on g-generators, by an argument essentially equivalent to that
of [5], Berman, Glazer, and Schein proved in [2, Theorem 5.1] that
ζ∧F(s) equals ζ

i
F(s) and ζ

∧
F (s) (cf. Theorem 7.1). In Proposition 7.4, the

equality ζ∧F(s) = ζ iF(s) is verified in a similar way as in the proof of [5,
Theorem 7.6]. As a result, the equality ζ iF(s) = ζ∧F(s) = ζ∧F (s) = ζ iF(s)
holds.

Write H for the Heisenberg group F2,2, and focus on the identity
ζ iH(s) = ζ∧H(s) = ζ∧H(s) = ζ iH(s). Another generalization of the identity
ζ∧H(s) = ζ∧H(s) is known. Suppose that the nilpotent class of G is 2.
Define the Lie algebra L(G) as (G/Z) ⊕ Z with the usual Lie bracket
operation induced by the commutator in G, where Z is the center of G.
Then, we have L(H) = H, and the identity ζ∧G(s) = ζ∧L(G)(s) is known

to hold (cf. [2, Section 1.1] or [13, Section 1.2.2]). On the other hand,
ζ iG(s) = ζ∧G(s) does not hold in general. Indeed, Theorems 7.1 and
7.3 of [5] provide a counter-example. The equality ζ iG(s) = ζ iL(G)(s) is

proved in Corollary 7.6, and thus ζ∧L(G)(s) = ζ iL(G)(s) does not always
hold.

For pro-isomorphic zeta functions of Lie algebras, Berman, Glazer,
and Schein [2] further investigated. The explicit formula for ζ∧L(s) was
shown in [2, Section 5], specifically for L belonging to a certain class of
Lie algebras over the integer rings of number fields. So far, we have not

found any formulae for DL(s) and D̂L(s) that recover their formulae
except for this study.

The contents of this paper are organized as follows. In Section 2,

we review the Hecke rings RL and R̂L. In Section 3, the formal series

DL(s) and D̂L(s) are introduced. In Section 4, the case of L = Zr is

considered. In Section 5, we study the series DH(s) and D̂H(s), and

prove our main theorem. In Section 6, our series DL(s) and D̂L(s) are
related to the isomorphic zeta function ζ iL(s) and the pro-isomorphic
zeta function ζ∧L(s) of L, respectively. Subsequently, we prove that
our main theorem also recovers the explicit formulae for ζ iH(s) and
ζ∧H(s). Finally, in Section 7, we observe the isomorphic zeta functions
in the cases of the free nilpotent Lie algebras and class-2 nilpotent Lie
algebras.

2. Hecke rings associated with algebras

First, we briefly recall the definition of Hecke rings and their degree
maps. For more details, refer to [17, Chapter 3]. Let G be a group, ∆
be a submonoid of G, and Γ be a subgroup of ∆. We assume that the
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pair (Γ,∆) is a double finite pair; that is, for all A ∈ ∆, Γ\ΓAΓ and
ΓAΓ/Γ are finite sets. Then, one can define the Hecke ring R = R(Γ,∆)
associated with the pair (Γ,∆) as follows:

• The underlying abelian group is the free abelian group on the
set Γ\∆/Γ.

• For all A,B ∈ ∆, the product of ΓAΓ and ΓBΓ is defined to be∑
ΓCΓ∈Γ\∆/Γ

#{Γβ ∈ Γ\ΓBΓ | Cβ−1 ∈ ΓAΓ} · ΓCΓ.

For every A ∈ ∆, write TΓ,∆(A) for the element ΓAΓ of R. We define
the degree map on R to be the additive map degR : R → Z such that
TΓ,∆(A)

degR = #Γ\ΓAΓ for every A ∈ ∆. Notably, it is known that
degR forms a ring homomorphism.

Let p be a prime number, and let L be as in Section 1. We next recall
the Hecke rings associated with L introduced in [9]. Fix a Z-basis of

L, and let r be the rank of L. Then, AutalgQ (L ⊗ Q), AutalgQp
(L ⊗ Qp),

EndalgZ (L), and EndalgZp
(L⊗Zp) are all identified with subsets ofMr(Qp).

In [9, Section 2], the following notation was introduced:

GL = AutalgQ (L⊗Q), GLp = AutalgQp
(L⊗Qp),

∆L = EndalgZ (L) ∩GL, ∆Lp = EndalgZp
(L⊗ Zp) ∩GLp ,

ΓL = AutalgZ (L), ΓLp = AutalgZp
(L⊗ Zp).

The global Hecke rings RL and the local Hecke ring RLp are the Hecke
rings with respect to (ΓL,∆L) and (ΓLp ,∆Lp), respectively.

The other global Hecke ring R̂L was introduced in [9, Section 3].

Define the group ĜL to be the restricted direct product of GLp relative
to ΓLp for all prime numbers p, that is, the set of elements (αp)p of∏

pGLp such that αp ∈ ΓLp for almost all p. The monoid ∆̂L and the

group Γ̂L denote ĜL∩
∏

p∆Lp and
∏

p ΓLp , respectively. Then, we write

R̂L for the Hecke ring with respect to (Γ̂L, ∆̂L).
Section 3 of [9] described relations among these Hecke rings. The

local Hecke ring RLp is related to the global Hecke ring R̂L as follows:

Proposition 2.1 ([9, Proposition 3.1]). The following assertions hold:

(1) The local Hecke ring RLp is regarded as a subring of R̂L by the

map induced by the natural inclusion of ∆Lp into ∆̂L.
(2) For each prime number q with p 6= q, the local Hecke rings RLp

and RLq commute with each other in R̂L.
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(3) R̂L is generated by the family of local Hecke rings {RLp}p as a
ring.

For simplicity, we set

TLp = TΓLp ,∆Lp
, TL = TΓL,∆L

, T̂L = TΓ̂L,∆̂L
.

Then, we have TLp(α) = T̂L(α) in R̂L for each α ∈ ∆Lp . Let us relate

the global Hecke rings R̂L and RL. The map ηL denotes the diagonal
embedding of ∆L into

∏
p∆Lp . Then, we define the additive map

η∗L : R̂L → RL given by T̂L(α̂) 7→
∑

β TL(β), where β runs through a

complete system of representatives of ΓL\η−1
L (Γ̂Lα̂Γ̂L)/ΓL. Let us denote

by η∗L : ΓL\∆L → Γ̂L\∆̂L the map induced by ηL. Then, the two global
Hecke rings are related as follows:

Lemma 2.2 ([9, Lemma 3.2]). If the map η∗L is bijective, then η∗L is
multiplicative and injective.

From now on, we regard R̂L as a subring of RL if η∗L is bijective.

In the rest of this section, we relate R̂L to the automorphism group

of L̂.

Proposition 2.3. Let Af be the ring of finite adeles over Q, and set

Q =
∏

pQp. Then, the objects ĜL, ∆̂L, and Γ̂L satisfy the following

identities as subsets of Mr(Q):

ĜL = AutalgAf
(L⊗ Af), ∆̂L = Endalg

Ẑ
(L̂) ∩ ĜL, Γ̂L = Autalg

Ẑ
(L̂).

Proof. The second and third identities are straightforward consequences

of the fact that L̂ equals
∏

p(L ⊗ Zp). Let us prove the first identity.

Denote by GL′
r(Q) the restricted direct product of GLr(Qp) relative to

GLr(Zp) for all prime numbers p. Then, it is easy to see that GL′
r(Q)

coincides with GLr(Af). And the group ĜL, by definition, equals the
intersection of GL′

r(Q) and
∏

pGLp . Thus, we have

ĜL = GLr(Af) ∩
∏
p

GLp .

Since L⊗Q is identified with
∏

p(L⊗Qp), the group
∏

pGLp coincides

with AutalgQ (L⊗Q). Hence, we have

GLr(Af) ∩
∏
p

GLp = GLr(Af) ∩ AutalgQ (L⊗Q) = AutalgAf
(L⊗ Af).

This implies the first identity. □
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3. Formal power series and formal Dirichlet series
associated with algebras

Let p and L be as in the previous section. We set Lp = L ⊗ Zp. In

this section, the formal series PLp(X), DL(s), and D̂L(s) are defined.
Subsequently, their relationship is described. For a positive integer n
and a nonnegative integer k, we introduce the following notation:

ÂL(n) =
{
α̂ ∈ ∆̂L

∣∣∣ [L̂ : L̂α̂] = n
}
, AL(n) = {α ∈ ∆L | [L : Lα] = n} ,

ALp(p
k) =

{
α ∈ ∆Lp

∣∣ [Lp : Lαp ] = pk
}
,

where Lαp is the image of Lp under the endomorphism α. Additionally,

L̂α̂ and Lα are defined in a similar manner. Note that each element of
∆̂L is regarded as an element of Endalg

Ẑ
(L̂) by Proposition 2.3.

Now, the formal power series PLp(X) is introduced. We define

TLp(p
k) =

∑
α

TLp(α),

where α runs through a complete system of representatives of ΓLp\ALp(p
k)/ΓLp .

The formal power series PLp(X) is defined as the generating function
of the sequence {TLp(p

k)}k; that is,

PLp(X) =
∑
k≥0

TLp(p
k)Xk.

Next, the formal Dirichlet series D̂L(s) and DL(s) are defined. We
set

T̂L(n) =
∑
α̂

T̂L(α̂), TL(n) =
∑
α

TL(α),

where α̂ (resp. α) runs through a complete system of representatives of

Γ̂L\ÂL(n)/Γ̂L (resp. ΓL\AL(n)/ΓL). The formal Dirichlet series D̂L(s)

and DL(s) are the generating functions of the sequences of {T̂L(n)}n
and {TL(n)}n, respectively; that is,

D̂L(s) =
∑
n>0

T̂L(n)n
−s, DL(s) =

∑
n>0

TL(n)n
−s.

Next, PLp(X) is related to D̂L(s). For each element α̂ of ∆̂L, let αp
denote its ∆Lpcomponent. Then, T̂L(α̂) =

∏
p TLp(αp) is obtained,

where p runs over all prime numbers. Here, this infinite product
is meaningful since its terms commute with each other according to
Proposition 2.1, and almost all of them are equal to 1. Consequently,
the following theorem is proven:
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Theorem 3.1. The sequence {T̂L(n)}n is multiplicative, and the Euler

product formula for D̂L(s) holds; that is,

D̂L(s) =
∏
p

PLp(p
−s),

where p runs through all prime numbers.

Proof. It is easy to see that TLp(p
k) = T̂L(p

k) in R̂L. Since L̂ is isomor-

phic to
∏

p Lp, it follows that [L̂ : L̂α̂] =
∏

p[Lp : L
αp
p ] for each α̂ ∈ ∆̂L.

Hence, we have

ÂL(n) =
∏
p

ALp(p
vp(n)),

where vp is the p-adic valuation. This proves the theorem. □

Finally, D̂L(s) is related to DL(s) using the additive map η∗L : R̂L →
RL. It is evident that η

∗
L maps T̂L(n) to TL(n) for each positive integer

n. Thus, the Euler product formula for DL(s) is proven.

Theorem 3.2. If the map η∗L is bijective, then the sequence {TL(n)}n
is multiplicative, and the Euler product formula for DL(s) holds; that
is,

DL(s) =
∏
p

PLp(p
−s).

Proof. By assumption, R̂L is considered as a subring of RL. Since

TL(n) = T̂L(n) and DL(s) = D̂L(s), Theorem 3.1 implies the desired
result. □

4. Case of the free abelian Lie algebra Zr

Using the notations in Section 3, the theory of the Hecke ring with
general linear groups as reported by Hecke [6], Shimura [17], and Tam-
agawa [18] is considered.

Let r be a positive integer. Clearly, GZr and GZr
p
are identified

with GLr(Q) and GLr(Qp), respectively. Similarly, we have ∆Zr =
Mr(Z)∩GLr(Q), ∆Zr

p
=Mr(Zp)∩GLr(Qp), ΓZr = GLr(Z), and, ΓZr

p
=

GLr(Zp). Thus, the Hecke rings RZr and RZr
p
coincide with the Hecke

rings treated in [6], [17], and [18]. Furthermore, the Hecke ring R̂Zr is
identified with RZr as follows:

Proposition 4.1. The map η∗Zr : R̂Zr → RZr is an isomorphism.
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Proof. Lemma 3.3 of [9] implies that η∗Zr is an injective homomorphism.

Moreover, the map ΓZr\∆Zr/ΓZr → Γ̂Zr\∆̂Zr/Γ̂Zr induced by ηZr , is
bijective according to the elementary divisor theorem. Note that, in
[9], Zr is defined as the ring of the direct sum of r-copies of Z, which
is incorrect. It is correct to define Zr as the abelian free Lie algebra of
rank r, as in the present study. □
Certainly, the formal power series PZr

p
(X) equals the local Hecke

series treated in [6] and [18]. The following theorem was proved:

Theorem 4.2 ([6, Satz 14], [18, Theorem 3]). Let

T (i)
r,p = ΓZr

p
diag[1, ..., 1,

i︷ ︸︸ ︷
p, ..., p]ΓZr

p

for each i with 1 ≤ i ≤ r. Then, the following assertions hold:

(1) RZr
p
is the polynomial ring over Z in variables T

(i)
r,p with 1 ≤ i ≤

r.
(2) The series PZr

p
(X) is a rational function over RZr , more pre-

cisely,
fr,p(X)PZr

p
(X) = 1,

where fr,p(X) =
∑r

i=0(−1)ipi(i−1)/2T
(i)
r,pX i. Particularly,

f2,p(X) = 1− T
(1)
2,pX + pT

(2)
2,pX

2.

Remark 4.3. Theorem 4.2 in the case r = 2 was proved in [6]. For
arbitrary r, it was demonstrated in [18].

The series DZr(s) is none other than the formal Dirichlet series
treated in [17, Chapter 3]. Since η∗Zr is bijective, the following the-
orem is obtained:

Theorem 4.4. The Euler product formulae for DZr(s) and D̂Zr(s)
hold; i.e.,

DZr(s) = D̂Zr(s) =
∏
p

PZr
p
(p−s),

where p runs through all prime numbers.

Proof. It is an immediate consequence of Theorems 3.1 and 3.2. □

Therefore, the following theorem is obtained:

Theorem 4.5 ([17, Theorem 3.21]). Define Ir(s) to be the infinite
product

∏
p fr,p(p

−s). Then, the following is obtained:

Ir(s)DZr(s) = Ir(s)D̂Zr(s) = 1.

Proof. This follows from Theorems 4.2 and 4.4. □
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5. Case of the Heisenberg Lie algebra

This section studies the proposed series in the case of the Heisenberg
Lie algebra H.

5.1. Local properties. Let us recall the main theorem of [8]. For
an element A of GZ2

p
and an element a of Q2

p, denote by (A, a) the

element

(
A a
0 0 |A|

)
of GL3(Qp), where |A| means the determinant of

the matrix A. Fix a system {x1, x2} of free generators of H. Then,
the set {x1, x2, [x1, x2]} forms a basis of H. Hence, the group GHp is
identified with the following subset of GL3(Qp):{

(A, a)
∣∣∣ A ∈ GZ2

p
, a ∈ Q2

p

}
.

In addition, an element (A, a) of GHp is contained in ∆Hp (resp. ΓHp)
if and only if A is in ∆Z2

p
(resp. ΓZ2

p
), and a is in Z2

p.
The following three ring homomorphisms s, ϕ, and θ were introduced

in [8, Section 6]:
Definition 5.1. For simplicity, we put deg = degRHp . The ring homo-
morphisms s : RZ2

p
→ RHp , ϕ : RHp → RZ2

p
, and θ : RHp → RHp are

defined by

TZ2
p
(A)s = THp(A,0) for each A ∈ ∆Z2

p
,

THp(A, a)
ϕ =

THp(A, a)
deg

THp(A,0)
deg
TZ2

p
(A) for each (A, a) ∈ ∆Hp ,

THp(A, a)
θ =

THp(A, a)
deg

THp(A, pa)
deg
THp(A, pa) for each (A, a) ∈ ∆Hp .

Remark 5.2. Although the multiplicativity of s, ϕ, and θ is not obvious
by the definition, it was proved in [8, Section 6].

Some relations among the three ring homomorphisms are introduced.

Proposition 5.3. The ring homomorphisms s, ϕ, and θ satisfy the
following properties:

ϕ ◦ s = idRZ2p
, θ ◦ s = s, ϕ ◦ θ = ϕ.

Proof. It is an easy consequence of Definition 5.1. □
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Our previous work [8] defined the element T2(p
k) of RHp for each

nonnegative integer k as follows:

T2(p
k) =

∑
(A,a)

THp(A, a),

where (A, a) runs through a complete system of representatives of
ΓHp\∆Hp/ΓHp satisfying vp(|A|) = k. The formal power series D2,2(X)
was defined as the generating function of the sequence {T2(pk)}k; that
is,

D2,2(X) =
∑
k≥0

T2(p
k)Xk.

The main theorem of our previous work [8] is as follows:

Theorem 5.4 ([8, Theorem 7.8]). Let T
(1)
2,p and T

(2)
2,p be as in Theorem

4.2. For simplicity, let us set Tp(1, p) = T
(1)
2,p and Tp(p, p) = T

(2)
2,p .

Define Y = pX. Then, D2,2(X) satisfies the following identity:

D2,2(X)θ
2 − Tp(1, p)

sD2,2(X)θY + pTp(p, p)
sD2,2(X)Y 2 = 1,

where D2,2(X)θ is the coefficient-wise image of D2,2(X) under θ, and

D2,2(X)θ
2
is defined similarly.

The sequences {T2(pk)}k≥0 and {THp(p
k)}k≥0 are related as follows:

Proposition 5.5. THp(p
2k) = T2(p

k) and THp(p
2k+1) = 0 for each k.

Proof. It is evident that vp([Hp : H(A,a)
p ]) = 2vp(|A|) for every (A, a) ∈

∆Hp . This completes the proof. □

The relation between D2,2(X) and PHp(X) is described as follows:

Corollary 5.6. D2,2(X
2) = PHp(X).

Proof. It is an immediate consequence of the proposition above. □

The Hecke ring RHp forms a ring over RZ2
p
via the ring homomor-

phism s. Moreover, owing to the second identity of Proposition 5.3, θ
is a ring homomorphism over RZ2

p
. Thus, RHp is a module (not a ring!)

over the polynomial ring RZ2
p
[θ] in one variable θ. Further, the maps s,

ϕ, and θ depend on p. Subsequently, we set sp = s, ϕp = ϕ, and θp = θ.
Therefore, Theorem 5.4 can be rewritten as follows:
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Theorem 5.7. Let f2,p(X) be as in Theorem 4.2, and let us keep the
notation of Theorem 5.4. Then, PHp(X) satisfies the following identity:

g2,p(θp; pX
2)PHp(X) = 1,

where

g2,p(θp;X) = θ2p · f2,p(X/θp) = θ2p − Tp(1, p)θpX + pTp(p, p)X
2.

Proof. Clear. □

We have just introduced the three ring homomorphism, of which ϕp
has not been used so far. In fact, it has been shown that ϕp plays a role
establishing the relationship between PHp(X) and PZ2

p
(X) as follows:

Theorem 5.8 ([8, Theorem 7.5]). PHp(X)ϕp = PZ2
p
(pX2).

5.2. Global properties. In this subsection, the Dirichlet series DH(s)

and D̂H(s) are considered. Since the bijectivity of η∗H was proved in [9,
Lemma 3.4], the map η∗H is an injective ring homomorphism. Moreover,
the nonsurjectivity of η∗H was shown in [9, Section 4]. Hence, the global

Hecke ring R̂H is a proper subring of RH. However, the following
theorem can be obtained:

Theorem 5.9. The Euler product formulae for DH(s) and D̂H(s) hold;
that is,

DH(s) = D̂H(s) =
∏
p

PHp(p
−s).

Proof. It is an immediate consequence of Theorems 3.1 and 3.2. □

The ring homomorphisms ŝ, ϕ̂, and θ̂p are defined as follows:

Definition 5.10. The ring homomorphisms ŝ : R̂Z2 → R̂H and ϕ̂ : R̂H →
R̂Z2 are defined by

T̂Z2(Â)ŝ =
∏
p

TZ2
p
(Ap)

sp for each Â ∈ ∆̂Z2 ,

T̂H(α̂)
ϕ̂ =

∏
p

THp(αp)
ϕp for each α̂ ∈ ∆̂H,

where Ap (resp. αp) is ∆Z2
p
(resp. ∆Hp) component of Â (resp. α̂) for

each p.

The ring homomorphism θ̂p : R̂H → R̂H is defined by

T̂H(α̂)
θ̂p = THp(αp)

θp ·
∏
q ̸=p

THq(αq) for each α̂ ∈ ∆̂H.
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Consequently, the following proposition is obtained:

Proposition 5.11. The following equalities hold:

(1) ϕ̂ ◦ ŝ = idR̂Z2
,

(2) θ̂p ◦ ŝ = ŝ and ϕ̂ ◦ θ̂p = ϕ̂ for each p,

(3) θ̂p ◦ θ̂q = θ̂q ◦ θ̂p for any two prime numbers p, q.

Proof. It is an easy consequence of Proposition 5.3. □

From the proposition above, it is evident that the Hecke ring R̂H is

a ring over R̂Z2 by ŝ, and that θ̂p is a ring homomorphism over R̂Z2

for each p. Set θ̂ = (θ̂p)p, and let R̂Z2 [θ̂] be the polynomial ring over

R̂Z2 in infinitely many variables θ̂. Then, the Hecke ring R̂H is an

R̂Z2 [θ̂]-module.
Now, the following theorem is proven, analogous to Theorem 4.5:

Theorem 5.12. Î2(θ̂; s) is defined as the infinite product∏
p

g2,p(θ̂p; p
1−2s).

Then, the following is obtained:

Î2(θ̂; s) ·DH(s) = Î2(θ̂; s) · D̂H(s) = 1.

Proof. Theorem 5.9 implies that

D̂H(s) =
∏
p

PHp(p
−s).

Let us fix a prime number p. Then, the following is obtained:

D̂H(s)
θ̂p = PHp(p

−s)θp ·
∏
q ̸=p

PHq(q
−s).

In addition, RHp and RHq commute with each other in R̂H for any
prime number q different from p. Hence, for each element ap of RZ2

p
,

we have

ap · (D̂H(s)) =
(
ap · PHp(p

−s)
)
·
∏
q ̸=p

PHq(q
−s).

Therefore,

Î2(θ̂; s) · D̂H(s) =
∏
p

(
g2,p(θp; p

1−2s) · PHp(p
−s)

)
.

Subsequently, Theorem 5.7 implies that the right-hand side of the
equality above is 1, which completes the proof. □
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In the remainder of this section, it is shown that Theorem 5.12 re-

covers Shimura’s Theorem 4.5. Let ψ̂ : R̂Z2 [θ̂] → R̂Z2 be the ring

homomorphism over R̂Z2 satisfying (θ̂p)
ψ̂ = 1 for all p. Then ϕ̂ and ψ̂

are compatible; that is,

(a · A)ϕ̂ = aψ̂ · Aϕ̂ for any a ∈ R̂Z2 [θ̂] and any A ∈ R̂H,

which follows from Proposition 5.11. Consequently, the following propo-
sition is proven:

Proposition 5.13. The following identities hold:

(1) Î2(θ̂; s)
ψ̂ = I2(2s− 1),

(2) D̂H(s)
ϕ̂ = D̂Z2(2s− 1).

Proof. It is evident that g2,p(θp; pX
2)ψ̂ = g2,p(1; pX

2) = f2,p(pX
2),

which implies the first equality. The second one follows from Theo-
rems 5.8, 5.9 and 4.4. □

Therefore, it is concluded that Theorem 5.12 recovers Theorem 4.5

when r = 2: The map ϕ̂ is applied to the equality in Theorem 5.12.

Then, Proposition 5.13 and the compatibility of ϕ̂ and ψ̂ imply that

I2(2s− 1)D̂Z2(2s− 1) = 1.

Remark 5.14. As shown in Theorem 7.3 of [8], the coefficients of the
Hecke series D2,2(X) are not necessarily commutative. Thus, neither
are those of PHp(X) and DH(s).

6. Zeta functions of algebras

Let us return to the case where L is as in Section 1. In this section,

our series DL(s) and D̂L(s) are related to the isomorphic zeta function
ζ iL(s) and pro-isomorphic zeta function ζ∧L(s) of L, respectively.

Denote by S ′∧
n (L) the family of Ẑ-subalgebrasM of L̂ of index n such

that there is an isomorphism M ∼= L̂ of algebras over Ẑ. Then, the

maps ΓL\AL(n) → S in(L) given by ΓLα 7→ Lα and Γ̂L\ÂL(n) → S ′∧
n (L)

given by Γ̂Lα̂ 7→ L̂α̂ are both bijective. Since L is free of finite rank as an
abelian group, one verifies in a similar way as in the proof of Proposition

1.2 of [5] that the maps S∧
n (L) → S ′∧

n (L) defined by M 7→ M ⊗ Ẑ and
S ′∧
n (L) → S∧

n (L) defined by M 7→ M ∩ L are inverse to each other,
in particular, one has #S ′∧

n (L) = #S∧
n (L) = a∧n(L). Hence, it follows

that, for each n,

TL(n)
degRL = ain(L), T̂L(n)

degR̂L = a∧n(L).
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Thus, DL(s) and D̂L(s) are related to ζ iL(s) and ζ
∧
L(s) as follows:

DL(s)
degRL = ζ iL(s), D̂L(s)

degR̂L = ζ∧L(s).

By definition, we have degR̂L|RLp
= degRLp . Moreover, degR̂L and

degRL are related as follows:

Proposition 6.1. If the map η∗L is bijective, then we have degR̂L =

degRL ◦ η∗L, that is, degRL|R̂L
= degR̂L.

Proof. Since η∗L is bijective, so is

η∗L|ΓL\η−1
L (Γ̂Lα̂Γ̂L)

: ΓL\η−1
L (Γ̂Lα̂Γ̂L) → Γ̂L\Γ̂Lα̂Γ̂L.

Thus, we have #Γ̂L\Γ̂Lα̂Γ̂L = #ΓL\η−1
L (Γ̂Lα̂Γ̂L), which completes the

proof. □

The above proposition implies the following corollary:

Corollary 6.2. In order that ζ∧L(s) = ζ iL(s), it is necessary and suffi-
cient that η∗L is bijective.

Proof. Sufficiency is an easy consequence of the above proposition and

the equality DL(s) = D̂L(s). Let us prove necessity. Since η∗L is
injective, so is η∗L|ΓL\AL(n) for each n. If ζ∧L(s) = ζ iL(s), then we have

#ΓL\AL(n) = #Γ̂L\ÂL(n) for each n, and thus, η∗L is bijective, □

Next, the case L = Zr is considered. We make use of the following
identity shown by Tamagawa [18]:

Theorem 6.3 ([18, Corollary]). Let fr,p(X) be as in Theorem 4.2.
Then, the following identity holds:

fr,p(X)degR̂Zr =
∏

0≤k≤r−1

(1− pkX).

This theorem derives the following identity:

Corollary 6.4. Let Ir(s) be as in Theorem 4.5. Then, the following
identity holds:

Ir(s)
degRZr = Ir(s)

degR̂Zr =
∏

0≤k≤r−1

ζ(s− k)−1,

where ζ(s) is the Riemann zeta function.

Proof. This follows from the multiplicativity of degR̂Zr and the above
theorem. □
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Theorem 4.5 and Corollary 6.4 recover the explicit formulae for ζ∧Zr(s)
and ζ iZr(s) proved in [5].

Corollary 6.5 ([5, Proposition 1.1]). The following identity holds:

ζ iZr(s) = ζ∧Zr(s) =
∏

0≤k≤r−1

ζ(s− k).

Proof. It is immediately verified by applying the maps degRZr and

degR̂Zr to the identity of Theorem 4.5. □

Next, the case L = H is investigated. Let ψ : Z[θ̂] → Z be the ring

homomorphism satisfying (θ̂p)
ψ = 1 for all p. Then, the coefficient-wise

images of g2,p(θ̂p;X) and Î2(θ̂; s) under the homomorphism (degR̂H ◦
ŝ)⊗ ψ : R̂Z2 [θ̂] → Z are as follows:

Proposition 6.6. The following identities hold:

g2,p(θ̂p;X)(degR̂H◦ŝ)⊗ψ = (1− p2X2)(1− p3X2),

Î2(θ̂; s)
(degR̂H◦ŝ)⊗ψ = ζ(2s− 2)−1ζ(2s− 3)−1.

Proof. By the identities (1)-(a) and (2)-(a) of [8, Proposition 5.4], we
have

Tp(1, p)
degR̂H◦ŝ = p2(1 + p−1), Tp(p, p)

degR̂H◦ŝ = p2,

which implies the first identity. The second is easily derived by the
first one. □
Remark 6.7. degR̂H ◦ ŝ and degR̂Z2 are slightly different: For each

A ∈ ∆̂Z2 , it follows from [8, Proposition 5.4] and [17, Theorem 3.24]
that

T̂Z2(Â)degR̂H◦ŝ = [Ẑ2 : (Ẑ2)A] · T̂Z2(Â)degR̂Z2 .

Since degR̂H ◦ θ̂p = degR̂H, the ring homomorphism (degR̂H ◦ ŝ )⊗ψ
and degR̂H are compatible. Therefore, the explicit formulae for ζ iH(s)
and ζ∧H(s) shown in [5] and [2] are recovered.

Corollary 6.8 ([5, Theorem 7.6], [2, Theorem 5.1]). The following
identity holds:

ζ iH(s) = ζ∧H(s) = ζ(2s− 2)ζ(2s− 3).

Proof. It is an easy consequence of Proposition 6.6 and Theorem 5.12.
□

7. Isomorphic zeta functions

In this section, we observe the isomorphic zeta functions in the cases
of the free nilpotent Lie algebras and class-2 nilpotent Lie algebras.
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7.1. Case of the free nilpotent Lie algebras. Let F = Fc,g (resp.
F = Fc,g) be the free nilpotent group (resp. Lie algebra) of class c
on g-generators. For a nilpotent Lie algebra L, denote by γi(L) the
i-th term of its lower central series, and set Lab = L/[L,L]. In this
section, we describe the explicit formulae for the zeta functions of F
and F . As mentioned in the introduction, they are essentially due
to [5]. However, other literature does not deal with isomorphic zeta
functions of algebras, and it is necessary to give a detailed proof of the
explicit formula for ζ iF(s).

In the case c = 1, we have Fc,g = Fc,g = Zg. Hence, the explicit
formulae were obtained in Corollary 6.5. In the following, suppose
that c ≥ 2. The explicit formula for ζ∧F(s) was proved in [2], and those
for ζ iF(s) and ζ

∧
F (s) were established in [5]:

Theorem 7.1 ([5, Theorem 7.6], [2, Theorem 5.1]). Let mi be the rank
of γi(F)/γi+1(F) for each 1 ≤ i ≤ c. Define α = 1

g

∑c
i=1 imi, and

β =
∑c

i=2 imi. Then, we have

ζ iF(s) = ζ∧F (s) = ζ∧F(s) =

g−1∏
j=0

ζ(αs− β − j).

Remark 7.2. The following formula for mi was established in [20, Satz
3]:

mi =
1

i

∑
j|i

µ(j)gi/j,

where µ is the Möbius function.

Therefore, it remains to consider ζ iF(s). We prepare the following
lemma which is a Lie algebra analogue of [19, Theorem 1.8]. The proof
imitates the one of [14, Chapter 1, Exercise 7]:

Lemma 7.3. Let L be a nilpotent Lie algebra, and letM be a subalgebra
of L. If L =M + [L,L], then L =M .

Proof. For each i ≥ 0, denote by Zi the i-th upper central series of
L. Assume that M was a proper subalgebra of L. Then, there exists
i > 0 such that Zi + M = L and Zi−1 + M ⊊ L. Since [L,L] =
[Zi +M,Zi +M ] ⊂ Zi−1 +M , we have L = M + [L,L] ⊂ Zi−1 +M ,
which is a contradiction. □

Now, we prove the explicit formula for ζ iF(s).
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Proposition 7.4. Let us keep the notation of Theorem 7.1. Then, the
following identity holds:

ζ iF(s) = ζ∧F(s) =

g−1∏
j=0

ζ(αs− β − j).

Proof. Theorem 7.1 reduces us to proving that ζ iF(s) = ζ∧F(s). Let M
be an element of S∧

n (F) with a positive integer n. It is sufficient to show

that M and F are isomorphic as Lie algebras. Clearly, Fab ⊗ Ẑ and

Mab⊗Ẑ are isomorphic to (F̂)ab and (M̂)ab as Ẑ-modules, respectively.

By assumption, (F̂)ab and (M̂)ab are isomorphic as Ẑ-modules. Hence,

Mab ⊗ Ẑ is isomorphic to Fab ⊗ Ẑ = Ẑg as Ẑ-modules. Since Mab

is finitely generated abelian group, it follows from the fundamental
theorem of finitely generated abelian groups that Mab is isomorphic to
Zg. Hence, we can take elements x1, ..., xg of M such that their images
under the canonical projection M → Mab form a basis of Mab, and it
follows from Lemma 7.3 that x1, ..., xg generate M . By the universal
property of F , there exists a surjective homomorphism φ : F → M ,

and the induced map φ⊗ idẐ : F̂ → M̂ is also surjective. Since F̂ and

M̂ are isomorphic as algebras over Ẑ, the ranks of them over Ẑ are the

same. Therefore, φ⊗ idẐ is an isomorphism. The faithful flatness of Ẑ
over Z implies the bijectivity of φ, which completes the proof. □

7.2. Case of class-2 nilpotent Lie algebras. Suppose that L is a
nilpotent Lie algebra of class 2. By the class-two Lie correspondence
of [3, Section 3.1], there exists a unique torsion-free finitely generated
nilpotent group G of class 2 up to isomorphism such that L is isomor-
phic to L(G) = (G/Z) ⊕ Z as Lie algebras, where Z is the center of
G. Hence, we may identify L with L(G), and Z is regarded as the
center of L by the map z ∈ Z 7→ (1, z) ∈ L. In this subsection, the
equality ζ iG(s) = ζ iL(s) is verified. To show this, Proposition 7.5 below
is essential. The proposition is mentioned in many references without
proof, for example, [5, Section 4],[13, Section 1.2.2], and [2, Section
2.1]. Although a proof is proposed in [3, Proposition 3.1], it is incor-
rect (cf. Remark 7.15). Therefore, it would be worthwhile to give a
precise proof in this study.

Proposition 7.5. Let n be a positive integer. Denote by Sn(G) (resp.
Sn(L)) the set of subgroups (resp. subalgebras) of G (resp. L) of index
n. Then, there exists a bijection fn : Sn(G) → Sn(L) such that, for
each H ∈ Sn(G), its image is isomorphic to L(H) as Lie algebras. In
particular, we have #Sn(G) = #Sn(L).



GLOBAL PROPERTIES OF A HECKE RING 19

Before proving the proposition, we deduce the following corollary
which is our purpose of this subsection:

Corollary 7.6. The equalities ζ iG(s) = ζ iL(s) and ζ
∧
G(s) = ζ∧L(s) hold.

Proof. LetH ∈ Sn(G), and putM = fn(H). Then,M ∼= L(H). By the
class-two Lie correspondence of [3, Section 3.1], we see that H ∈ S in(G)
if and only if M ∈ S in(L). Thus, we have #S in(G) = #S in(L). Since

L(Ĝ) = L⊗Ẑ and L(Ĥ) = L(H)⊗Ẑ, it follows from the local class-two
Lie correspondence of [3, Section 3.1] that H ∈ S∧

n (G) if and only if
M ∈ S∧

n (L). Thus, we have #S∧
n (G) = #S∧

n (L), which completes the
proof. □

Remark 7.7. It is mentioned without proof in [2, Section 1.1] and [13,
Section 1.2.2] that the equality ζ∧G(s) = ζ∧L(s) holds.

In order to prove Proposition 7.5, we introduce some notation. Let
πG (resp. πL) be the canonical projection G→ G/Z (resp. L→ G/Z).
Denote by φ the map G/Z × G/Z → Z given by (xZ, yZ) 7→ [x, y] =
x−1y−1xy. Since G is of nilpotent class 2, its derived group [G,G] is
contained in Z. Hence, G/Z is abelian group, and we have [xy, z] =
[x, z][y, z], [x, yz] = [x, y][x, z] for any x, y, z ∈ G. This implies that φ
is a Z-bilinear form.

Further, let A and B be finite-index subgroups of Z and G/Z, re-
spectively. Denote by SG(A,B) the set of subgroups H of G such that
H ∩ Z = A and πG(H) = B. Similarly, denote by SL(A,B) the set of
subalgebras M of L such that M ∩ Z = A and πL(M) = B. For any
H ∈ SG(A,B) and M ∈ SL(A,B), we have [G : H] = [L : M ] = [Z :
A][G/Z : B]. Hence, to prove Proposition 7.5, it is sufficient to show
the following lemma:

Lemma 7.8. There exists a bijection fA,B : SG(A,B) → SL(A,B)
such that, for each H ∈ SG(A,B), its image is isomorphic to L(H) as
Lie algebras.

To prove this lemma, we need to study SG(A,B) and SL(A,B).
First, the following three lemmas are shown. Although they hold in
general for arbitrary torsion-free nilpotent groups (cf. Remark 7.12),
we provide a direct proof here for self-containedness:

Lemma 7.9. Let x, y ∈ G, and let n be a positive integer. If [x, yn] = 1,
then [x, y] = 1.

Proof. Since φ is bilinear, we have 1 = [x, yn] = [x, y]n. Since G is
torsion-free, we have [x, y] = 1. □
Lemma 7.10. G/Z is torsion-free.
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Proof. Let x, y ∈ G, and suppose that yn ∈ Z for some n > 0. By
Lemma 7.9, we have [x, y] = 1, which derives that y ∈ Z. Thus, G/Z
is torsion-free. □

Lemma 7.11. For each finite-index subgroup H of G, the center ZH
of H equals Z ∩H.

Proof. It is immediately verified that Z∩H ⊂ ZH . Let x be an element
of ZH , and let y be an element of G. Since H is of finite index, there
exists a positive integer n such that yn ∈ H. Hence, we have [x, yn] = 1,
which implies [x, y] = 1 by Lemma 7.9. Thus, we have ZH ⊂ Z∩H. □

Remark 7.12. Lemmas 7.9, 7.10, and 7.11 hold for an arbitrary torsion-
free nilpotent group G′. Let x, y ∈ G′, and let n be a positive integer.
Suppose that [x, yn] = 1. Then, we have (x−1yx)n = yn. According
to a result of Chernikov (cf. [19, Theorem 4.10]), the map w ∈ G′ 7→
wn ∈ G′ is injective, which implies that [x, y] = 1. Thus, Lemma 7.9
holds for G′. By using this, Lemmas 7.10 and 7.11 for G′ are verified.

By Lemma 7.10, G/Z is a free abelian group of finite rank. Let d
denote this rank. We next relate (Z/A)d to SG(A,B) and SL(A,B).

Fix a subset b = {b̃i}di=1 of G such that its image under πG forms a basis

of B. Set bi = πG(b̃i) for each i. For an element Ξ = (ξi)i of (Z/A)
d,

take an element (zi)i of Z
d satisfying ξi = ziA for each i. Further,

define Hb(Ξ) (resp. M b(Ξ)) to be the subgroup (resp. subalgebra)

of G (resp. L) generated by A and {b̃izi}i (resp. {(bi, zi)}i). Since
A ⊂ Z, the group Hb(Ξ) and the Lie algebra M b(Ξ) are independent
of the choice of (zi)i.

If φ(B,B) ⊂ A, then, [b̃i, b̃j] and [(bi, zi), (bj, zj)] are contained in A
for any i, j. Since B is a free abelian group, each element of Hb(Ξ)
(resp. M b(Ξ)) can be written uniquely as a product (resp. sum) a ·∏

i(b̃izi)
ni (resp. (1, a) +

∑
i ni(bi, zi)), where (ni)i ∈ Zd and a ∈ A.

Hence, Hb(Ξ) ∈ SG(A,B), and M b(Ξ) ∈ SL(A,B). Moreover, B ⊕ A
is a subalgebra of L, and a unique isomorphism B⊕A→M b(Ξ) of Lie
algebras is determined by the inclusion A ⊂ M b(Ξ) and the additive
map B →M b(Ξ) defined by bi 7→ (bi, zi) for each i.

Lemma 7.13. The following assertions hold:

(1) The following three conditions are equivalent:
• SG(A,B) 6= ∅,
• SL(A,B) 6= ∅,
• φ(B,B) ⊂ A.
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(2) Suppose that φ(B,B) ⊂ A, and let Ξ be an element of (Z/A)d.
Then, Hb(Ξ) ∈ SG(A,B), and M b(Ξ) ∈ SL(A,B). Moreover,
L(Hb(Ξ)) and M b(Ξ) are isomorphic to the subalgebra B ⊕ A
of L as Lie algebras.

(3) If φ(B,B) ⊂ A, then the maps λbG : (Z/A)d → SG(A,B)
given by Ξ 7→ Hb(Ξ), and λbL : (Z/A)d → SL(A,B) given by
Ξ 7→ M b(Ξ) are bijective. In particular, we have #SG(A,B) =
#SL(A,B) = [Z : A]d.

Proof.
1. If there exists H ∈ SG(A,B), then H/A is isomorphic to the

abelian group B by the canonical projection G/A → G/Z. Hence,
φ(B,B) = [H,H] ⊂ A. Similarly, we have φ(B,B) ⊂ A if SL(A,B) 6=
∅. Conversely, if φ(B,B) ⊂ A, then we have Hb(1) ∈ SG(A,B), and
M b(1) ∈ SL(A,B), where 1 is the identity element of (Z/A)d.
2. It is sufficient to prove that L(Hb(Ξ)) = B ⊕A, which is an easy

consequence of Lemma 7.11.
3. Let H ∈ SG(A,B). Then, H/A is isomorphic to B by the canon-

ical projection G/A → G/Z. Hence, there exists a unique element

Ξ = (ξi)i of (Z/A)
d such that {(b̃iA) · ξi}i forms a basis of H/A, and

we have H = Hb(Ξ). Therefore, the map λbG is bijective. In a similar
way, for each M ∈ SL(A,B), there exists a unique element Ξ = (ξi)i of
(Z/A)d such that the subset{(bi, ξi)}i of (G/Z)⊕ (Z/A) = L/A forms a
basis ofM/A, and we haveM =M b(Ξ). Thus, λbL is also bijective. □

Now, a proof of Lemma 7.8 is obtained:

Proof of Lemma 7.8. It follows from Lemma 7.13 that SG(A,B) =
SL(A,B) = ∅ if φ(B,B) 6⊂ A. If φ(B,B) ⊂ A, then fA,B = λbL ◦ (λbG)−1

has the desired property by Assertions 2 and 3 of Lemma 7.13. □

In the rest of this subsection, we give an example of Lemmas 7.8 and
7.13. Subsequently, using this, we remark on Proposition 3.1 of [3].
Example 7.14. Consider the case where G is the Heisenberg group H
with a free generating set {xG, yG}. Set b = {xGyG, y2G}, B = 〈πG(xGyG),
πG(y

2
G)〉, and A = 〈z2G〉, where zG = [xG, yG] = x−1

G y−1
G xGyG. Then,

we have [G/Z : B] = [Z : A] = 2, and hence, SG(A,B) ⊂ S4(G),
SL(A,B) ⊂ S4(L). Since φ(B,B) = A, it follows from Lemma 7.13
that #SG(A,B) = #SL(A,B) = 4.

Now, L = L(G) is the Heisenberg Lie algebra H, and generated by
xL = (πG(xG), 1) and yL = (πG(yG), 1). Put zL = (1, zG). Then, [xL, yL] =
zL. By Lemma 7.13, fA,B = λbL ◦ (λbG)

−1 is a bijection SG(A,B) →
SL(A,B), and we have fA,B(H

b(1)) = M b(1), where 1 is the identity
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element of (Z/A)2. Moreover,

M b(1) = Z(xL + yL) + 2ZyL + 2ZzL
= {kxL + lyL +mzL | (k, l) ∈ Z(1, 1) + Z(0, 2), m ∈ 2Z},

Hb(1) = {(xGyG)ky2lG z2mG | k, l,m ∈ Z}.

Remark 7.15. We keep the notation of the above example. Proposition
3.1 of [3] claims that, for each n, a one-to-one correspondence between
Sn(G) and Sn(L) is induced by the bijection f ′ : G→ L defined by

f ′(xkGy
l
Gz

m
G ) = kxL + lyL +mzL for k, l,m ∈ Z.

However, it is not true. Indeed,M b(1) corresponds toH ′ = f ′−1(M b(1)) =
{xkGylGzmG | (k, l) ∈ Z(1, 1)+Z(0, 2), m ∈ 2Z}, however, H ′ is not a group
because xGyG ∈ H ′, and (xGyG)

2 = x2Gy
2
Gz

−1
G 6∈ H ′.
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