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GOOD BASIC INVARIANTS FOR ELLIPTIC WEYL GROUPS AND
FROBENIUS STRUCTURES

IKUO SATAKE

ABSTRACT. In this paper, we define a set of good basic invariants for the elliptic Weyl
group for the elliptic root system. For an elliptic root system of codimension 1, we show
that a set of good basic invariants gives a set of flat invariants obtained by Saito and
that Taylor coefficients of the good basic invariants give the structure constants of the

multiplication of the Frobenius structure obtained by the author.

1. INTRODUCTION

1.1. Aim and results of the paper. Let W be an elliptic Weyl group defined as a
reflection group for an elliptic root system. Let Y, H be domains where H is isomorphic
to the upper half plane and 7 : Y — H is an affine bundle whose fiber is isomorphic to
C!*!. The group W acts on each fiber of 7.

Let ¢ € W be a hyperbolic Coxeter transformation defined in [10]. It is known that
¢ is not semi-simple and has no fixed points on Y.

We take the Jordan decomposition:

c=o .,

where ¢** is a semi-simple part and ¢ is a unipotent part. We show in Section 7 that we
could take a suitable section S C Y (which gives isomorphism S ~ H by the composite
morphism S C Y — H) such that

(i) every point in S is fixed by the action of ¢*°,

(ii) no points of S are contained in the reflection hyperplanes of W.

Then for the W-invariants on Y, we define Taylor expansions along S and by using these
Taylor expansions, we define a set of good basic invariants which is analogous to the cases
for the Coxeter groups (see [14]).

In this paper, we define the notion of an admissible triplet (g,(, L) (cf. Definition
3.1) which has the same role as ¢**(= g) and S(= L*). Then we define a set of good basic

invariants.
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For the elliptic root systems of codimension 1, we show that a set of good basic
invariants gives a set of flat invariants obtained by Saito [11] and the Taylor coefficients
of the good basic invariants give the structure constants of the multiplication of the
Frobenius structure obtained by the author [12].

In the study of the Frobenius structure for the elliptic Weyl groups, a characteriza-
tion (Theorem 9.1(iii)) of the unit field is important. We find another characterization
(Proposition 8.12) of the unit field by the space S(= L*). This enables us to find the
notion of the good basic invariants for elliptic Weyl groups and the ones for finite complex
reflection groups.

Here is a brief account of the contents of the paper. In Section 2 we remind notions
of elliptic root systems, elliptic Weyl groups and their invariant theory. In Section 3 we
define an admissible triplet for the elliptic root system. In Section 4 we define good basic
invariants. In Section 5 we give properties of Taylor coefficients of good basic invariants.
In Section 6 we construct an admissible triplet. In Section 7 we show the uniqueness of
good basic invariants under suitable assumptions. In Section 8 We treat the elliptic root
system of type “codimension one”. We give a description of the bilinear form in terms of
the good basic invariants (Theorem 8.4). In Section 9 we show that the good invariants

give a nice description of the Frobenius structure which is defined by Saito and Satake.

1.2. Acknowledgements. This work is supported in part by Grant-in Aid for Challeng-
ing Research (Exploratory) 17K18781 , Grant-in-Aid for Scientific Research(C) 18K03281
and Grant-in-Aid for Scientific Research(C) 22K03295

2. W-INVARIANTS FOR ELLIPTIC ROOT SYSTEMS

We recall the elliptic root systems (cf. Saito [11]). We use notations in [13] in order

to fit our notations to the ones of Kac [7].

2.1. Elliptic root systems. In this subsection, we define an elliptic root system (cf.
[11]).

Let [ be a positive integer. Let F' be a real vector space of rank [ + 2 with a
positive semi-definite symmetric bilinear form I : F' x ' — R, whose radical rad I :=
{z € F|I(z,y) = 0,Yy € F} is a vector space of rank 2. We put O(F,radl) := {g €
GL(F)|I(gx,g9y) = I(xz,y)Vz,y € F, g|raar = id.}. For a non-isotropic vector a € F
(i.e. I(a,) #0), we put a¥ := 2a/I(cr,cx) € F. The reflection w, € O(F,rad ) with
respect to a is defined by w,(u) :==u — I(u,a)a  (Vu € F).
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Definition 2.1. A set R of non-isotropic elements of F' is an elliptic root system belonging
to (F, 1) if it satisfies the axioms (1)—(iv).
(i) The additive group generated by R in F', denoted by Q(R), is a full sub-lattice
of F.
(ii) I(e,BY) € Z for o, € R.
(iii) wa(R) = R for Ya € R.
(iv) If R = Ry U Ry, with Ry L Ry, then either R; or Ry is void.

We have Q(R) Nradl ~ Z?. We call a 1-dimensional vector space G C rad I
satisfying G N Q(R) ~ Z, a marking. We fix a,6 € F' s.t. GNQ(R) = Za and Q(R) N
rad I = Za @ ZJ. Let (Ig : I) € Rog be the smallest number such that (I : )] defines
an even lattice structure on Q(R). The bilinear form (Ig : I)I is denoted by Ig.

The isomorphism classes of the elliptic root systems with markings are classified in
[10].

2.2. Hyperbolic extension. We introduce a hyperbolic extension (F', I) of (F, 1), i.e. F
is a (I + 3)-dimensional R-vector space of which contains F' as a subspace and Tisa Sym-
metric R-bilinear form on F which satisfies 1| | = I and rad I =Ra. Itis unique up to iso-
morphism. We put O(F, F,rad I) := {g € GL(F) | I(gx, gy) = I(x,y)Vx,y € F, g(F) C
F, g|lp € O(F,rad I) }. The natural homomorphism O(F, F,rad I) — O(F,rad I) is sur-

jective and its kernel Kp is isomorphic to the additive group R:
0— Kg — O(F,F,radI) — O(F,rad I) — 1. (2.1)

We fix some notations. We take Ag € F' which satisfies I(Ag, ) = 1 and I(Ag, Ag) =
0. Then we have a decomposition F =F®RA,.

2.3. Elliptic Weyl group. We define an elliptic Weyl group. For a € R, we define a
reflection W, € O(F, F,rad I) by Wa(u) = u — I(u,a")a for u € F. We define an elliptic
Weyl group W as a group generated by w, (o« € R). A subgroup Kz := W N Ky is

isomorphic to Z.

2.4. Domains and Euler field. We define two domains:
Y := {z € Homgp(F,C) | {a,z) = —2rv/—1, Re(d,z) > 0}, (2.2)
H := {x € Homg(rad I,C) | (a,z) = —27v/—1, Re(s,z) > 0}. (2.3)

We have a natural morphism
m:Y — H. (2.4)
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We remark that H is isomorphic to H := {z € C|Imz > 0} by the function 6 /(—27y/—1) =
§/a : H — H. We define the left action of g € W on Y by (g-x,v) = (x,g'-~) for
reY andye F. We remark that the domain Y and the action of W on Y are naturally
identified with the ones of Kac [7, p.225].

Let F(Y') be the space of holomorphic functions on Y and Q(Y') be the space of
holomorphic 1-forms on Y. We denote by my < --- < m; the exponents of the elliptic
root system with marking (see [11, p22]) and we also denote by M4, the maximum of
the exponents.

We put n = [ + 1. Let d, be the smallest common denominator for the rational

numbers m; /Mg (1 =0, ,1). We define the normalized exponents by
d
dy o= Mg g — =1, ,n—1). 2.5
M= (o ne1) (25)

We remark that the equation (2.5) holds for the case a = n because m; = Mypq.. We also
remark that d, is l,,4. + 1 in [11, p23].

There exists a unique vector field F

E:QY)— F(Y) (2.6)
such that F(f) =0 for any f € F and
E(Ay) = @;ﬂ (2.7)

We call E the Fuler field.

2.5. The algebra of the invariants for the elliptic Weyl group. In this subsection,
we introduce the algebra of the invariants for the elliptic Weyl group.
We put F(H) :={f: H— C: holomorphic}. For m € Z, we put

FulY) = {f € F(Y)| Ef = mf}. (2.8)

The morphism 7 : Y — H induces 7* : F(H) — Fy(Y), thus Fo(Y)-module F,,(Y) is an
F(H)-module.
For m € Z , we put

Sm ={f € Fu(Y)| f(g-2) = f(2), Vg € W}, (2.9)
sV= Sy (2.10)

SW is a graded F(H)-algebra.
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Theorem 2.2 ([1, 2, 3, 4, 6, 8, 9, 16]). The F(H)-algebra SV is generated by a set
of algebraically independent homogeneous generators z',---  x™ (n =1 + 1) with degrees

0<dy <dy--- <d, which we call a set of basic invariants.

We put
d:=(dy, - ,dy). (2.11)
Then the degree m part S could be also written as
Sw=1{)_ AateSV|A € F(H), d-b=m}, (2.12)
=
where we denote
g’ = (z)r (@™, d-b=diby + - + dyuby. (2.13)

2.6. Decomposition of the space Y. Let X be a space of complementary subspaces

of rad I in a vector space F:
X ={VCF|F=V@®radl}. (2.14)
The space X is an affine space over Homg (F/rad I, rad I).
For the space Y defined in (2.2), we define a mapping:
fi:Y > X (2.15)

by fi(y) = ker y where we see y € Y as a morphism y : F — C. We see that f; is
O(ﬁ, F,rad I)-equivariant. By 7 : Y — H defined in (2.4), we have a mapping:

(m, f1):Y > Hx X (2.16)

which is an isomorphism as a real manifold.
The mapping f; is not a holomorphic mapping, but for any V & X , the subset
f7YV) has a description

M V)={zeY]|{wz)=0Yv eV} (2.17)

which gives the structure of a complex submanifold of Y. We remark that f; (V) is
isomorphic to H. Then the mapping f; gives a decomposition of Y into complex subman-
ifolds

Y=|]| W), (2.18)

veX

3. GRADED ALGEBRA

For an elliptic root system, we define a notion of an admissible triplet.
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3.1. Admissible triplet.

Definition 3.1. For g € O(]:;, Fradl), ¢ € C* and L C F, we call a triplet (g,(, L)

admissible if it satisfies the following conditions.

(i) g is semi-simple and

(9 —1id.)(F) C F. (3.1)
(i) ¢ is a primitive d,-th root of unity and
g 2% = (%2 (1<a<n) (3.2)
for a set of basic invariants !, --- , 2™ with degrees dy,--- ,d,.

(iii) L is a splitting subspace of rad I, which is g-stable and has no roots:

F=L®radl, (3.3)
g(L) =L, (3.4)
LNR=0. (3.5)

We remark that dimZL = n(=1+1).

From now on we fix an admissible triplet (g, ¢, L).
By Definition 3.1(i), the action of g on L is also semi-simple. We take a C-basis
2t oo 2" of L ®g C such that

g 2% =coz® (1 <a<n), (3.6)
where ¢y, - - , ¢, are eigenvalues of g on L. We consider 2!, -, 2" as functions on Y and
we define 2° € F(Y) by

0 <57 l‘)

= eyY). 3.7

He) = 2 @eY) (37

Then the set 2°, 21, -, 2™ gives a coordinate system of Y.
Definition 3.2. We put
LY ={zecY|{,r)=0VIec L} (3.8)

We remark that L € X and Lt = f7(L) (see (2.17). The morphism L* — H
induced by w : Y — H is an isomorphism. Then we identify the restriction f|;. of a
function f € F(Y) to L* with the function on H.

Proposition 3.3. For any q € L+ and g of the admissible triplet (g,¢, L), we have
9g-q9=q (3.9)

Proof. g acts on L, then g-q € L. {g-q,a) = {q,a), {g-q,0) = (¢,6), then g- ¢ =¢q. O
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We put
H, ={zeY|{a,z)=0} (3.10)
for o € R.
Proposition 3.4. (i) The space L* is regqular, i.e.
LLm(hMg>:@. (3.11)
a€R
(ii) On the space L*, the Jacobian matrix
oz~ )
= (3.12)
(62’6 L1/ 1<a,8<n

15 tnvertible.
(iii) The eigenvalues of g on L @g C are (% (1 < a < n).

Proof. (i) If z € L* N (UserHy), (z,1) =0 for any [ € L and {x,a) = 0 for some o € R.
Since @ € F, a = |+ Aa+ B0 for some | € L and A, B € R. Then 0 = A{a,z) + B(6, z).
Since (a,z), (6,z) € C are linearly independent over R by # € L+, A = B = 0. Then
a € L. It contradicts the assumption of admissibility (3.5).

(ii) Put 20 := 2°. Since the set of zeros of determinant of

ox®

(@)O<a,ﬁ<n

coincides with UyerH,, (cf. [11, (4.5) Theorem]), it is not 0 on any point of Lt. By
0 0
%%:L %%:0 (1<a<n), (3.13)

this determinant equals the determinant of
ox®

<w) 1<a,B<n '

Then we have the result.
(iii) By the result of (ii), (3.2) and Proposition 3.3, we obtain (iii) (where we used
a discussion which is the same as the proof of Theorem 4.2(v) of [15]). O

From now on we may and shall assume that
g -2 =(%2" (1<a<n). (3.14)

A C-basis of L ®g C satisfying (3.14) is called a “g-homogeneous basis”.
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Proposition 3.5. We have

=01 <a<n, d, <d,), (3.15)
ox®
—1| =0 (dy # dp). 3.16
55| =0 (A dy) (3.10)
For any a,b € 2%, we have
ox®
—1 =0 (a,beZ%, d-b#d-a (mod d,)), (3.17)
M >
where we denote
o & \" d\"
@ == (ﬁ) (%) fOT’b: (bl,"' ,bn) GZZO. (318)
Proof. These are direct consequences of (3.2) and (3.14). O

4. GRADED ALGEBRA [SOMORPHISM )

We fix an admissible triplet (g, (, L) for an elliptic root system.

4.1. The morphism ¢|g,(, L].

Definition 4.1. For the admissible triplet (g, (, L), a set of basic invariants z*,--- 2™ and
a g-homogeneous basis z!, -+, 2" of L @ C, we define an F/(H)-module homomorphism:
L 0"z = (w[0)])
LSV -5 F(Y “ s - b 4.1
>0

for an F(H)-free basis {2 |a € Z%y} of F(H)-module S%, where we used notations
[ = (2lp)]" = [t = (@)™ 27 = (@)™ for (a = (a1, an) € Z5y),

bl = byl---by,! for (b= (b, -+ ,by) € Z%). (4.2)
We remark that o[g, ¢, L](f) for f € SV is not necessarily invariant by the W-action.

Proposition 4.2. (i) ¢lg,(, L] depends neither on the choices of a set of basic in-
variants z* (1 < «a <n) nor on the choice of a set of g-homogeneous basis z“
(1<a<n)of LerC. ¢g,(, L] gives an F(H)-algebra homomorphism.

(ii) Let z* (1 < a <n) and 2% (1 < a < n) be the same as in Definition 4.1. For any
multi-indices a,b € Z%, the coefficients of 2" of the RHS of

e, ¢ Lz = Y %5’ ([= —a(zzzm)]“) b

. L
bEZL, L

isOifd-bd {d-a+dnj|j € Zso}.
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Proof. (i) For a set of basic invariants z® (1 < a < n), we define an F(H)-algebra

homomorphism ¢;[L] by
e1[L]: S = SW 2t [x— (20)]" (a € Z2y). (4.3)

By the same argument as in the proof of Proposition 3.2 (i) in [14], we see that this
morphism does not depend on the choice of a set of basic invariants 2!, - - - , 2™ but depends
only on the choice of L.

We define an F'(H )-algebra homomorphism ¢y by
1 obf
:SW = F(Y — — =
©2 S ( )7 f b' azb

bezL,

=Gl (4.4

This is a Taylor expansion along L* and it coincides with the natural inclusion SV C
F(Y).
We define an F'(H)-algebra homomorphism ¢3[L] by

es[L] - F(Y) = F(Y), 2" [z+(2[p0)]" (a€Z%). (4.5)

This morphism does not depend on the choice of a g-homogeneous basis 2!, ---, 2" of
L ®g C because a basis is unique up to linear transformations.
Then we have
vlg, ¢, L] = @s[L] o 2 0 ¢1[L]. (4.6)
Since ¢1[L], @2 and p3[L] are F(H)-algebra homomorphisms, their composite morphism

v = ¢lg,(, L] is also an F'(H)-algebra homomorphism.
ab «a
(ii) We remark that (:U—LLL) =01if b # 0 by 2% ;. € F(H). Then by the same

argument as in the proof of Proposition 3.2(ii) in [14], we have (ii). O

4.2. The morphism v[g,(, L]. In this subsection, we construct a graded F(H)-algebra
isomorphism (g, (, L] by the same argument as in §3.2 in [14].
We define decreasing filtrations on S% and F(Y') by
F(s") = sy,
jzm
FME(Y))={>_ "€ F(Y)|e,€ F(H)(b€ Z%),c, =0if d-b<m—1}
beZgO

respectively for m € Zso. Then S" and F(Y) are filtered F'(H)-algebras and ¢[g, ¢, L]
is a filtered F'(H )-algebra homomorphism by Proposition 4.2(ii).
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Definition 4.3. (i) Let grpelg, ¢, L] be the graded F(H)-algebra homomorphism in-
duced by a filtered F'(H)-algebra homomorphism ¢[g, ¢, L]:
grpplg, ¢, L : ng<SW) — grp(F(Y)), (4.7)
where
grp(S") = & F(sY)/Fm (ST, (4.8)
m€Z>o
grp(F(Y)) = & FrFE))/FHEY)). (4.9)
mGZzo

(iii)

For the graded F(H)-algebra S", we have the natural graded F(H)-algebra

isomorphism

Yy SV — grp(SV) (4.10)
which maps an element of SV to its canonical image in F7(S")/F/*(SW). Let
z,-.. 2" be a g-homogeneous basis of L @z C. We define

={>_ a’ € F(Y)|e € F(H), d-bis bounded }. (4.11)

beZy,

We have a decomposition

=P Vig.¢. L)), (4.12)
JET
where
V(g,(, L)(j) ={>_ e’ € F(Y)|e € F(H),d-b=j}. (4.13)
bEZL,
for j € Zso. These definitions do not depend on the choice of z*,--- 2", The

decomposition (4.12) gives a graded F'(H )-algebra structure on F'(H)[L] which is

isomorphic to the polynomial algebra
F(H)[z',--- "] (4.14)
with degz® = d,. Since the composite mapping
V(g,¢,L)(j) = F/(F(Y)) = F/(F(Y))/FT(F(Y)) (4.15)
is an isomorphism, we have a graded F'(H )-algebra isomorphism
by F(H)(L) = grp(F(Y))). (4.16)
Let v[g, (, L] be the graded F(H)-algebra homomorphism defined by

Y19 ¢l =¥yt ogrpply, ¢, Ll oy : SV — F(H)(L). (4.17)
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We have an explicit description of lg, ¢, L]:

1z — (@)
|

Ylg.¢. L) : SW = F(H)[L], 2~ > = E (4.18)

beZL,, db=d-a )

for an F(H)-free basis {z*|a € Z%,} of F(H)-module S, where we used notations in

Definition 4.1.
By Proposition 3.4(ii), we have the following proposition by the same argument as

in the proof of Proposition 3.3 in [14].

Proposition 4.4. With respect to the gradings (2.10) on SV and (4.12) on F(H)[L],
¥|g,C, L] is a graded F(H)-algebra isomorphism

Ylg,¢. L] SV S F(H)[L). (4.19)
4.3. Good basic invariants.

Definition 4.5. A set of basic invariants z!,--- | 2" is good with respect to the admissible
triplet (g, ¢, L) if 2, -+ 2" form a C-basis of the vector space 1[g,(, L]} (L ®@g C) w.r.t.
the natural inclusion L ®g C C F(H)[L]. We call z',--- 2™ “good basic invariants”.

5. TAYLOR COEFFICIENTS OF THE GOOD BASIC INVARIANTS

Let (g,(, L) be an admissible triplet for an elliptic root system.

Definition 5.1. Let 2° = _%‘i/j defined in (3.7) and z!,--- , 2™ be a g-homogeneous basis
of L ®g C. Then a set of basic invariants z!, - - - , 2" is compatible with a basis z!,--- , 2"

of L ®g C if the Jacobian matrix is a unit matrix, i.e.
ox®
028

where 5§ is the Kronecker’s delta.

= (95) 1<a,8<n’

LJ-> 1<a,B8<n

Proposition 5.2. For a g-homogeneous basis z%,--- , 2" of L®g C, we have the following
results.
(i) If we put
2= ¢lg, L7 (%) (1< a<n), (5.1)
then xt,--- ,x™ form a set of basic invariants which are good and compatible with

a g-homogeneous basis z*,--+ , 2" of L ®g C.
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(i) Conversely if z*,--- 2™ are good and compatible with a g-homogeneous basis
Zl oo 2" of L®g C, then ¢[g, ¢, L](x®) = 2% for 1 < a <n.
(iii) For any set of basic invariants x*,--- , x",
0 ([x — x| 2] , o
( b|LL]) =0ifd-b¢{d-a+d,j|j€ Zso} (5.2)
0z oL
fora,b € Z%,.
(iv) A set of basic invariants x*,--- ,x" is good if and only if
ox®
— 1< <
02|, . (l<apf<n)
are constants and
0%x®
=0 (da=d-a, |a| >2, 1 <a<n). (5.3)
0z% |, .
(v) If a set of basic invariants z*,- -+ | 2" is good and compatible with a g-homogeneous

basis z',--- , 2" of L @ C, then for a,b € 7% satisfying d - a = d - b, we have

10°([x — x[p1]%)
— = 040 5.4
bl 9zt P (5.4)
(vi) If a set of basic invariants x',---  x™ is good, then for 1 < a < n and a € 7%,
satisfying d - a = d,, we have
0 10%"
< R R ) - (5.5)

Proof. As for (i), (ii), they are direct consequences of Definition 4.5 and Definition 5.1.
As for (iii), it is proved in Proposition 4.2 (ii). As for (iv), we have

1 ab «
¢[97C7L](‘TQ) = Z a 8:()

beZly, db=da

b

Lt

by (4.18). By the goodness assumption, this must be an element of L ®g C. Then the
coefficient of z° is constant if |[b| = 1 and 0 if |b] > 2.
As for (v), we have ¢[g, (, L](z%) = 2* for 1 < a < n by (ii). Then for any a € Z%,

n

Ylg. ¢, L)(x ngc H (5.6)

=1

and comparing it with (4.18), we have the result. As for (vi), we have
J 10%" 0 ([ 10%”
9z0al 920 )|, 020 \al 920 |,.

1 0%

al 0z°

and

Lt
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is constant because z¢ is good. Then we have the result. 0

6. CONSTRUCTION OF AN ADMISSIBLE TRIPLET

6.1. Construction of an admissible triplet. In this subsection, we construct an ad-
missible triplet for an elliptic root system.

The following theorem is due to Saito [10].

Theorem 6.1. (Saito [10]) There exists ¢ € W C O(ﬁ,F, rad I) called a hyperbolic
Cozxeter transformation ([10, (11.2)]) which satisfies the following properties.

(i) (Lemma A) The restriction ¢ of ¢ to F (called a Cozeter transformation [10,

(9.7)]) is semi-simple of order d,,. The set of eigenvalues of ¢ is given by:
1, exp (2rv—1d,/d,) (a=1,---,n). (6.1)
(ii) (Lemma B) Let ¢ be a Coxeter transformation. Then
RNIm(c—1id.)=10. (6.2)
(iii) (Lemma C) For a hyperbolic Coxeter transformation ¢, we have

(€ = 1)+ Ir(¢, 0)

a€Im(c—id) (VE€F) (6.3)

and ¢™ is a generator of Ky, where Ip = (Ig : I)I, (Ig : I) is defined in Section
2.1 and Myqy s defined in Section 2.4.

Let

c=7c".cvmr (6.4)
be the Jordan decomposition to semi-simple element and unipotent element.

The following proposition shows that the semi-simple element ¢*° satisfies (3.1) and

(3.2) which are part of conditions of the admissible triplet.
Proposition 6.2. (i) & is an element of O(F, F,rad I) and
&lp=c (6.5)
(i)

(& —id.)(F) C F.
(iii) There ezists uniquely a primitive d,-th root of unity ¢ such that the action of ¢**
on f €8SV is given by

L p=Cry (6.6)
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Proof. We first show that the R-bilinear form I on (¢ — id.)(F) is positive definite. Since

c—1d.: F— F' is semi-simple, we have a decomposition:
F = (c—id.)(F)®ker(c—id.).

By the inclusion rad I C ker(c — id.), we have (¢ —id.)(F)Nrad I = (). Since I on F is
semi-positive, I on (¢ —id.)(F') is positive definite.

Put

(c—id)(F)" = {z € F|I(z,y) =0 Vy € (c—id.)(F)}.
Then we have
F=(c—id)(F)® (c—id)(F)*. (6.7)

We see that (¢ — id.)(F') is ¢-stable and ¢ on (¢ — id.)(F’) is semi-simple because ¢ = ¢ on
F and c is semi-simple.

The space (c—id.)(F)* is &-stable because (c—id.)(F) is ¢-stable and ¢ € O(F, F,rad I).

We show that the action of ¢ on (¢ — id.)(F)* is unipotent.

For all x € (¢ —id.)(F)*,

(¢ —id.)(z) + Igr(x,0)

a (6.8)

max

is an element of (¢ —id.)(F) by Theorem 6.1 (iii). On the other hand, (¢ —id.)(x) in (6.8)

is an element of (¢ — id.)(F)* because (¢ — id.)(F)* is ¢-stable. Also Ig(z,d) a in

max

(6.8) is an element of rad I which is a subset of (¢ —id.)(F)*. Then by a decomposition
(6.7), we have

(¢ —id.)(z) + Ir(x,0) maxa = 0. (6.9)

Then ¢ is identity both on (¢—id.)(F)*/Ra and Ra. Thus ¢ is unipotent on (c—id.)(F)=*.

Then we have

e )C on (¢ —id.)(F) iy _ id. on (¢c—1id.)(F) (6.10)
id. on (c—id.)(F)*, ¢ on (c—id)(F)*.
From this description of ¢**, we have (i), (ii).

As for (iii), we see that ¢ is an element of Kr (see (2.1)) and (c*"P)d» is a
generator of Ky because (¢"")? is a unipotent part of ¢ and it is a generator of Kz by
Theorem 6.1 (iii).

Then there exists uniquely a primitive d,,-th root of unity ¢ such that the action of
i on f € SV is given by

UL f = (M, (6.11)
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Since ¢ = (¢*"P)~! . ¢ and ¢ € W, the action of ¢** on f € SV is
e f=lEmm)y g f=Em) T f =0
0J

We shall construct a splitting subspace L which is a part of admissible triplet. We
remind the reader of the definition of the space X defined in (2.14):

X={VCF|F=V@&radl}.
Definition 6.3. We put
X" = {(VeX|VNR=0} (6.12)
X = {VveX|&.V=V} (6.13)
Proposition 6.4. We have
X&' N X9 £ 0. (6.14)
A proof of Proposition 6.4 will be given in the next subsection.

Proposition 6.5. Let ¢ be a primitive d,-th oot of unity defined in Proposition 6.2 (iii).
For any L € X" N X9, (¢*,¢, L) is an admissible triplet.

Proof. By Proposition 6.2, ¢* and ( satisfies the conditions in Definition 3.1. For L €
X% N X" it satisfies the condition of Definition 3.1(ii). O

6.2. Proof of Proposition 6.4. In this subsection, we give a proof of Proposition 6.4.

We first prepare a space of complementary subspaces of rad I in a vector space F":
X ={UCF|F=U®radl}. (6.15)

We give a relation of X with X defined in (2.14). For V € X,V ¢ F, the dimension of
VN Fisn—1(=1). Then we have

F=(VNF)®radl.
Then we have a natural morphism:
p: XX, VeVAF (6.16)

We could easily check that p : X > Xisa HomR(ﬁ /F,rad I')-principal bundle. In par-
ticular, p is surjective. The group O(ﬁ , F,rad I) acts on the space X and p is equivariant

w.r.t. this group action.
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Definition 6.6. We put

X = {UeX|UNR=0} (6.17)
X© = {UeX|e®-U=U}. (6.18)

Proposition 6.7.
(i) p 1(X79) = X" (6.19)

(i) pH(X7) = K.
Proof. (i) is a consequence of Lemma 6.8. (ii) is a consequence of Proposition 6.2(ii) and
Lemma 6.9(iii). O

Lemma 6.8. For V € X, VN R =0 if and only if p(V) N R = 0.

Proof. f VN R =10, (VN R)NF is also an empty set, which is p(V) N R.
If VNR # (), there exists x € VN R. Then x € R C F, (VN R)NF is also
non-empty. 0

Lemma 6.9. Let g € O(F, F,rad I) which is semi-simple with (g — id.)(F) C F.
(i) We have
(9 —id.)(F) = (g — id.)(F).
(ii) ForV € )Z, the followings are equivalent.
(a) g(V) =V.
(b) 9(p(V)) = p(V).
(¢) (g —id)(F)CV.
(iii) We put
X9 ={UeX|g-U=U}.
Then we have
P ={V e X[g(V) =V}

Proof. (i) The proof of the inclusion C is trivial. For D, we have (g—id.)2(F) C (g—id.)(F)
by the assumption. Since g — id. : F — F is semi-simple, (g — id.)2(F) = (g — id.)(F)
Then we have a result.

(ii) (a) = (b). Since g(F) C F, g(FNV)C FNV.

(b) = (c). Since p(V) is g-stable, a natural projection ¢ : F' — F/p(V) ~rad [ is
g-equivalent. For any = € (g —id.)(F'), Jy € F s.t. x = (g —id.)(y). Then we have

p(x) = plg(z) —2) = g- p(x) — p(z) = 0,
because the action of g on rad [ is trivial. Then (g — id.)(F') C p(V).
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By (g —id.)(F) = (9 —id.)(F) and p(V) C V, we have (c).
(¢) = (a). Since g — id. : F — F is semi-simple, a vector space V which satisfies

(9g—id)(F)CcV CF
is g-stable.
(iii) is a direct consequence of (ii). O
For the space and a natural morphism:
E := {z € Homg(F,C) | {a,z) = —27v/—1, Re(d,z) >0}, (6.21)
m:E— H, (6.22)
we have a similar construction as in §2.6, i.e. we define a mapping;:
f2:E—=X (6.23)

by fo(x) = ker x where we see z € E as a morphism z : F© — C. We see that fy is
O(F,rad I)-equivariant. We have a mapping:

(', f2) :E— Hx X (6.24)

which is an isomorphism as a real manifold.
The following proposition which is obtained by Theorem 6.1 (ii) Lemma B is due to
Saito [11]

Proposition 6.10. ([11, p.44 (7.2) Lemmal) For a Cozxeter transformation in Theorem
6.1(1), we put

E:={z €E|c-z ==z}, (6.25)
E, = (7')"(7) (6.26)
for the space E defined in (6.21), ' : E — H defined in (6.22) and 7 € H. Then we have
E-NE ¢ | ] Ha (6.27)
a€ER
for
H, ={r€E|{a,2) =0} (a€R). (6.28)

Proposition 6.11. We have
XN X9 £ (6.29)
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Proof. For 7 € H, the isomorphism (6.24) induces an isomorphism:
E, ~X. (6.30)

We could easily check that this isomorphism induces the following isomorphisms:

E, NE~ X% (6.31)
E-\ | Ho~ X7 (6.32)
a€ER
by Proposition 6.2(i). Then by Proposition 6.1(iii) and Proposition 6.10, we have (6.29).
0

Proof of Proposition 6.4. By Proposition 6.11, we have X N X7 £ ). Since
p: X — X is surjective, we have p~H(X® N X79) £ (). By Proposition 6.7, we see that

5{'555 N )Z'reg _ p—l(XESS) ﬂp_l(XTEQ) _ p—l(XESS N Xreg) 7& @
[

Remark 6.12. The subspace L which we construct in Proposition 6.5 satisfies (c—id.)(F') C
L by Lemma 6.9(i), (ii). Then the assertion RN L = () is an enhancement of Theorem 6.1
(ii) Lemma B.

7. AMBIGUITY OF THE CHOICE OF A SPLITTING SUBSPACE L

In this section, we show that the C-span of good basic invariants do not depend on
the choice of a splitting subspace L € X% N X" of an admissible triplet (¢**,(, L) of
“zero type” which we define in Definition 7.1 if the codimension of an elliptic root system
is 1.

For an elliptic root system, its codimension is defined in [11, p23] as a cardinarity
of {i|d; = d,}.

If the codimension of an elliptic root system is 1, then we have a uniqueness asser-
tion (Proposition 7.3) that the C-span of good basic invariants for the admissible triplet
(€, ¢, L) does not depend on the choice of L € X N X" under the assumption that L
is of “zero type” which we define in Definition 7.1.

If the codimension of an elliptic root system is greater than 1, then we have no
uniqueness theorem. In Appendix A, we give an example of Ly, Ly € X¢ N X" which

are of zero type and give different C-spans of good basic invariants for the case of A§1’”

type.
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7.1. Signature of V' € X. ForV e )N(, TonVNFis positive definite. Then a signature
of TonV may be (n —1,1,0) or (n,0,0) or (n — 1,0, 1), where we denote by (4, lo,[_)

the numbers of positive, zero and negative eigenvalues of the Gram matrix of ﬂv.

Definition 7.1. An element V € X is called of “zero type” if a signature of TonV is
(n—1,1,0),

We give an explicit description of a splitting subspace of zero type. V & X. We
remind that a,d € rad I is a basis of rad I. For U € X, an R-vector space
{x € F|I(z,y)=0VyeU}

has an R-basis a, d, A such that

I(6,\)=1, I(A\)A)=0.

For ¢y, c € R, put

Vereo = U SR+ 10 + c2a). (7.1)
Forp:)N(—>X, we have

p71<U) = {‘/01,62 |01702 € R}
Then we see that V., ., is of zero type if and only if ¢; = 0 because I on U is positive
definite.
7.2. Uniqueness of the good basic invariants.
Proposition 7.2. Let x!,--- 2" be a set of good basic invariants for the admissible triplet
(¢**,¢, Vo), where Voo is constructed in (7.1) for U € X" N X"9. Then for ¢;,cy € R,

51 _ (6615+02a)d1x17 . ’in — (eclé—i—cga)dnxn

are a set of good basic invariants for the admissible triplet (¢**,C, Ve, c,)-

Proof. Let 2° = —27r(iﬁ defined in (3.7). We take a g-homogeneous basis z',--- 2" €

U @r C. We take 2" € Vj such that 2t ... 2" is a g-homogeneous basis of V ®r C and
Ez" =1, where FE is a Euler field defined in (2.6). Put

20.=20 2= = T = 2 6 + .
Then a set of 2',--+ 2" is a g-homogeneous basis of V,, ., ®g C.
If fe F(Y) satisfies Ef = mf for m € Z, then f has a decomposition:
f=exp(mz")f(2°, 2 -, 2" 1)
for some function f(2°,z',---,2""'). Then

f=exp(m(Z" — c16 — cpa)) f(Z°, 2, -, 2",
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Thus

and

Then we have

flve,, = exp(m(—c1d — c2a)) flygy,, (7.2)
where we compare these functions under the identification Vgl ~ H ~ V1 .
We have
aa”a‘:.’a — (6615+02a)da aa:ca — (ecl5+02a)da aaxa o aaxoc =0
0z° VA 0z¢ VA 0z VA 0z° Vi
where we used
g 0
ozt 0%
for 1 <1i <n, (7.2) and Proposition 5.2(iv). By the same argument, we have
oz _ Ox®
938 98
0z it 0z Vi
and they are constants. Then by Proposition 5.2(iv), we have the result. 0

Proposition 7.3. If the codimension of an elliptic root system is 1, then the C-span of
good basic invariants for the admissible triplet (¢**,(, L) does not depend on the choice of

L€ X% N X" under the assumption that L is of zero type.

Proof. If the codimension of an elliptic root system is 1, X¢ is one point by the results
of [11, p44] and (6.31). Then X" N X" is also one point by Proposition 6.29. Thus we
have the result by Proposition 7.2. O

8. (GOOD BASIC INVARIANTS FOR CODIMENSION 1 CASES

In this section, we consider the cases of the elliptic root systems of codimension 1
(i.e. d,—1 < d,). We fix an admissible triplet (g, (, L) with L of zero type.

8.1. Admissible triplet for codimension 1 cases. We put
dy = 0. (8.1)
By the codimension 1 assumption that d,,_; < d,,, we have a duality:
do +dp—o=4d, (0<a<n). (8.2)
For the admissible triplet (g, , L) with L of zero type, we have
F=radlI® (LNF). (8.3)
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By (8.3), we see that Ton LNFis nondegenerate. Then the orthogonal complement
(LNF)Y  ={zeL|l(z,y)=0V¥yecLNF} (8.4)
of L N F' gives a direct decomposition of L:
L=(LNF)®(LNF)*. (8.5)
We have the following proposition.

Proposition 8.1. There exists a basis 2°,2',--- 2™ of (L ® R) @ C such that 2 =
§/(=2my/—=1), 2" € (LN F)* @ C, 2, 2" € (LN F) ®r C with

1(2%,2°) = 6g4pn (0<a,B<n), (8.6)
g -2 =C%2 (0<a<n). (8.7)

Proof. Since g € O(ﬁ, F,radI) and g acts on L, g acts on L N F and on its orthogonal
complement (L N F)L defined in (8.4). We study the eigenvalues of g on these spaces.

First we show that the eigenvalue of g on the 1-dimensional space (LNF)*is (4 = 1.
Since dim(L N F)*+ = 1, we take 0 # £ € (LN F)*. Then g€ = ¢y for some ¢y € R. Since
E€F\F,1(6,¢)#0. By I(g-8,g-&) =1(6,€), we have ¢g = 1 = (.

Then by the condition of admissibility (Definition 3.1(iii)), the eigenvalues of g on
LNF are ¢4, ... (91,

By the duality (8.2), we could take z!,---,2""1 € (LN F) ®g C such that g - z* =
(4o 2 and IN(z“ 2P) = 6pypn for 1 <a,B<n-—1.

Take 20 := 0/(—2my/—1). Take 2" € (L N F)* ®g C such that 1(z°,2") = 1. Since
the signature of L is (n — 1,1,0), we have I(z", 2") = 0.

Then we see that 2% --- | 2" satisfy the conditions (8.6) and (8.7). O

8.2. Bilinear form and Euler field. Let 2°,--- , 2" be the same as in Proposition 8.1.
Then the set 2°,--- , 2" forms a coordinate system of Y. Then the symmetric R-bilinear

form I on F defines a C-bilinear form on F ®g C and this gives

I:QY) ®py) QUY) = F(Y) (8.8)
by I1(dz*,d=?) = I(z*,2P).
We have 3
Y _T(4.0
o = 1(d=°), (8.9)

where I : Q(Y) — Der(Y) is an isomorphism induced by (8.8) and Der(Y) is the module
of derivations of F(Y).
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The Euler field E defined in (2.6) is interpleted as

(Ig: 1)d,~

E = 1(ds), (8.10)

mmaz
where we see § as a function on Y. Then we have

0 T 1 Mmagz

PR (dz0) = o/ —1 (Ig : Id,

(8.11)

by 2o = #.
8.3. Bilinear form and Euler field on S". Let 2!, -, 2" be a set of basic invariants
with degrees d; < --- < d,,_1 < d,. We put
=§/(—2nv/—1). (8.12)
The Euler field E satisfies
Ez® =dyz® (0 <a<n),

where dy = 0 (see (8.1)). Then the Euler field E' descends to
E = Zd 12— : Qgw — SV, (8.13)

where Qgw is the module of Kihler differentials of S over C. We define the normalized

Euler field E, o by
1
Eoorm = d—E :Qgw — S, (8.14)
Let 2°,---, 2" be the same as in Proposition 8.1, which form a coordinate system of Y.

By the W-invariance of I , we have the S"-bilinear form

TW : st R gw st — SW (815)
defined by
~ " Ox 02 ~
Tw (dz®, da?) = 8;1 8221(,271,272) e sW (8.16)
71,72=0

for 0 < a,p <n.
By (8.11) and 2° = 2°, Tjy(d2®) : Qew — SV, w — Iy (da®,w) gives

]' mmax

—21/—1(Ig: I)d,

Ty (da®) = (8.17)



GOOD BASIC INVARIANTS FOR ELLIPTIC WEYL GROUPS AND FROBENIUS STRUCTURES 23

8.4. Property of a set of basic invariants for codimension 1.

Proposition 8.2. For a set of basic invariants z*,--- 2",
o= =2" L =0, (8.18)
2"(q) #0 (Vg€ Lh). (8.19)

Proof. As for (8.18), it is shown by (3.15). We show (8.19). Let 2° = §/(—2mv/—1)
defined in (8.12). For any «, 5 (0 < a, f < m), we put

a®? = Ty (dz®, dz®).
Then by Iy (dz®, dz?) = D =0 Dz gfi[(z”l,z"’?), we have

oz® OxP
a " )0<a71<ndet(a 2

By Proposition 3.4(ii), det(a®?)o<q.5<n is not 0 for any g € L*.
On the other hand, det(a®?)o<qs g<n € SY

det(a®”)o<a,p<n = det(—— Jo<sms<ndet(T(27,272)) 02, Aa<n-

Thus we could expand

n(n+1):
n+1
det( 0<a B<n = Z A (820)
for A; € F(H)z', -, 2" NSy ., ;) Evaluating the RHS of (8.20) at ¢ € L™, we
have
Ania(@)(@" (@)™
which is not zero. Then we have 2"(q) # 0. O

The following proposition is a key observation in the study of good basic invariants.

Proposition 8.3. For 2 = §/(—2m\/—1) defined in (8.12) and a set of basic invariants

al - a", the following conditions are equivalent.

(1) 921 is a nonzero constant.
(ii) ™1 is a nonzero constant.
) Iy

)

(iii

(dx™, dz™)|pr = 0.
(iv) (8/0x™)2Iy (da™, dz™) = 0.

Proof. By the equation (8.11), we have
8[En 1 Mmaz E 1 Mmax
= I —
oz =2my/—1 (I : I)d, —2ny/—1(Ig: 1)

Then (i) is equivalent to (ii).

", (8.21)
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By INW(dx”,dx") = >y Oz Jz* f(z'“,z”) 8a”—"|Ll = 0if 99 # 0,n and

. Y1,72=0 9271 9272 Y 9z
I(27", 27%) = 04, 4,.n, We have
~ oz oz
Iy (dz", dz")| =2 .
Lt 020, 02|, .
8 n
By (8.21) and %5 | | = (waz‘éu, we have

Ty (dz™, dz™)

. 23(:)3”]“) ( 1 Mmax "
Lt 020 —27y/—1 (g : 1)

By (8.19), the condition (ii) is equivalent to the condition (iii).

)

Since fw(dx”, dz") € S}, we have
Iy (da", dz") = A(z™)? 4+ B(z") + C
with A € S = F(H), B € F(H)[2',--- 2" '|nS}Y, C € F(H)[z',--- 2" '] NS} .
By 2% =0 for 1 <a <n—1, we have
Ty (da”, da™) | = A(z"| ).
By (8.19), (iii) is equivalent to A = 0 and it is equivalent to (iv). O

8.5. Good basic invariants and the bilinear form.

Theorem 8.4. For an admissible triplet (g,(, L) with L of zero type for the elliptic
root system of codimension 1, let 2% --- 2" be the basis of (L @& RS) ®r C defined in
Proposition 8.1. Put 2° = §/(—2mv/—1) defined in (8.12). Let x',--- 2" be a set of good
basic invariants compatible with the g-homogeneous basis z*,--- , 2" of L ®r C

(i)
o CV DT 52

mmax

(i) Any fw(dxo,dxﬁ) (B=0,---,n) is written as follows:

Xz

Tw (da®, dz®) = mﬁ P 8.23
(i) Any Iy (dz®, dz?) (a -+, n) is written by Taylor coefficients
8(7,:[:& a(l o
(1<a< 2%, d-a=dy+d 24
0z |1’ (820 8Z“> Sosmacliyda=dotd) (824)

as follows:

Ty (dz®, da®)

1 . 1 [8 [0z 02
5a+ﬂ,n (IL‘”|LL> X +b Zb | a [@ (azﬁ* + aza*):|

z’, (8.25)

Lt
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where ax =n—a (0 < a <n).

Proof. (i) By the restriction of (8.21) to L*, we have (8.22) by 9z"/9z"|;. = 1.

(ii) As for (8.23), it is obtained by (8.17) and (2.5).

(iii) We prove (8.25). By (i) and Proposition 8.3, (9/82™)2Iyy (da", dz™) = 0. Then
for any a, 8 (1 < o, B < n), Iy (da®, dz®) € ngerﬁ is represented as

Iy (da®,da”) = ) APaoan N Bt (8.26)
a:(ah...,an)EZgo, b:(bly_._7bn)ezr>7,0’
an=0, bp=0,
d-a=da+dg—dn db=da+ds

for A%%, B®F ¢ F(H).

By taking higher order derivatives of the both sides of (8.26) with respect to 2%, -+ | 2"
and evaluating them at L1, we determine A%# B?”B in the following lemmas. Proofs of
these lemmas are almost the same as Lemma 6.10-Lemma 6.16 in [14]. Thus we omit
them.

Lemma 8.5. For the cases d, + dg < d,,
A% =0 if dy +dg < d, ora#0. (8.27)
Lemma 8.6. We have
AsBgn if do + dg = d,,,
(RHS of (8.26))[,. = ¢ ° e ¥ ’ (8.28)
0 if do +dg # d,.

Lemma 8.7. We have

(LHS of (8.26))|1+ = datpon- (8.29)
Lemma 8.8. For the cases do + dg > d,,, take any multi-index ¢ = (c1,--- ,cn) € 2%,
such that ¢, =0, d-c=d, + dg — d,,, we have
1 0°
- _ pAaB,.m
L! e (RHS of (8.26))} T AP (8.30)
Lemma 8.9. For the cases do + dg > d,,, take any multi-index ¢ = (c1,--- ,cn) € 2%,
such that ¢, =0, d-c=d, + dg — d,,, we have
L0 tms of 326)|| =0 (8.31)
190 of (8. L0 )

By these lemmas, for any «, 8,¢ (1 < a, f <n, c € Z%;), we obtain

s _ J B (ﬁ) it dy + ds = dy, ¢ = 0,

0 otherwise.

(8.32)
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Lemma 8.10. For any multi-index ¢ € 2%, with ¢, =0, d-c=d, + dg, we have

1 0°

— — BB

[c! 520 (RHS of (8.26))} . BX". (8.33)
Lemma 8.11. For any multi-index ¢ € 2%, with ¢, =0, d-c=d, + dg, we have
1o 1[/0 Ox~ o° 0aP
— LHS 8.26 = — — . 8.34
c! 8zc( of ( ))] L {(82‘3 (92”5) oL * (820 82”“) Ll:| (8:34)
By (8.33) and (8.34), we have
1] o0° oz o0z’
B = — | — : :

¢ c! [820 (8z”5 * 8z”a>} o (8:35)
O

Remark 8.12. We could easily check that (8.25) is correct for « = 0 or 8 = 0 cases and
they coincide with (8.23).

9. FROBENIUS MANIFOLD

In this section, we discuss the relation between the Frobenius structure and the good

basic invariants for the elliptic root systems of codimension 1.

9.1. Frobenius structure. We assume that the codimension (see Section 7) of an elliptic

root system is 1. This means that the degrees d; < --- < d,, of a set of basic invariants
al, oo 2™ satisfy
dp_1 < d,,. (9.1)
For the module of C-derivations Der(S") of SV, the grading
Der(SV) = @Der(SW)m, % € Der(S")_,. (0<a<n) (9.2)
mez, v

is induced by the grading of SV = @, ., Sh and we see that the lowest degree part is
an F'(H)-free module of rank 1, i.e. we have
0
Der(S")_, = F(H)a—. (9.3)
n xn

Under the condition (9.1), the Frobenius structure on SV is constructed by Saito
[11] and Satake [12] (see also [5]).

Theorem 9.1. ( Saito [11], Satake [12] ) We assume the condition (9.1).
(i) There exist an SY-nondegenerate symmetric bilinear form (called the metric)
J : Der(SW) @gw Der(S™) — SW an SW-symmetric bilinear form (called the
multiplication) o : Der(SV) @gw Der(SV) — Der(SW) on Der(SY) and a field
e: Qew — SV, satisfying the following conditions:
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(a) the metric is invariant under the multiplication, i.e. J(XoY,Z) = J(X,Y o
Z) for any vector fields X,Y, Z : Qgw — SV,

(b) (potentiality) the (3,1)-tensor Vo is symmetric (where V is the Levi-Civita
connection of the metric), i.e. Vx(YoZ) =Y oVx(Z)—Vy(XoZ)+Xo
Vy(Z)—[X,Y] o Z =0, for any vector fields X,Y,Z : Qgw — SV,

(c) the metric J is flat,

(d) e is a unit field for o and it is flat, i.e. Ve =0,

(e) the Euler field Eyom satisfies Lieg,,,, (o) =1-o0, and Lieg,,, (J)=1-J,

(f) the intersection form coincides with the bilinear form TW: J(Eporm, J*(w) o

J* (W) = Iw(w,w') for 1-forms w,w' € Qgw, where J* : Qgw — Der(SV)
18 the isomorphism induced by the dual metric J* of J.
(i) Put
V= {0 € Der(SV)_, | Lie.(Lie.(Iw)) = 0 }. (9.4)
Then V is 1-dimensional vector space over C.

(iii) Let (J,0,€e) be a Frobenius structure satisfying the conditions in (i). Then e €
VA\{0}. Conversely for any element e € V' \{0}, there ezists uniquely a Frobenius
structure (J, 3, €) satisfying the conditions in (i). The Frobenius structure (J,3,¢)

is written as (j, 5,e) = (c ', cto, ce) for some c € C*.

Proof. As for (ii), see Saito [11] and Satake [12, Proposition 4.2].
We show (iii). For the dual metric J*, we have Lie,(Iy) = J* (see [14, Proposition
7.2]) and Lie.(J*) = 0 by Lie.(J) = 0 (see [5, pl46]). Then we have e € V. The

remaining parts are shown in [12, Proposition 5.2]. O
The metric J could be constructed from ch and e as follows.

Proposition 9.2. For 1-forms w,w’ € Qgw, we have
J*(w,w') = (Lie.(Iy)) (w, w'). (9.5)
A proof of this proposition is the same as [14, Proposition 7.2], so we omit it.

9.2. Frobenius structure via flat basic invariants. We shall interpret the Frobenius

structure by a set of basic invariants z!,-- -, 2"

Proposition 9.3. For 2 = §/(—2m/—1) defined in (8.12) and a set of basic invariants

al, - ", the following conditions are equivalent.

(i) 9/0a™ € V.
(ii) (8/82™)2Tyy (da", dz") = 0.
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Proof. We first remark that if « or  is not n, then
2d,—1

Ty (dz®, da®) @SW

Thus (8/02™)2Iy (dz®, dz®) = 0. Then (i) is equivalent to (8/0z™)2Iy (dz®, dz?) = 0 for
all 0 < «, f < n and they are equivalent to (ii). O

Let V be the connection introduced in Theorem 9.1. By Theorem 9.1(iii), the
metric J of the Frobenius structure satisfying conditions in Theorem 9.1(i) is unique up
to a constant factor. Then V and the notion of flatness do not depend on the choice of

the Frobenius structures in Theorem 9.1.

n

Definition 9.4. A set of basic invariants a',--- 2" is called flat w.r.t. the Frobenius

structure if
Vdz* =0 (1<a<n). (9.6)
Then 2% 2!, -+ 2" with 2° = §/(=27y/—1) defined in (8.12) form a flat coordinate

system for the Frobenius structure (Saito [11], see also Satake [12]).

We give a description of the multiplication and the metric w.r.t. the set of flat basic

invariants.

Proposition 9.5. We assume that a set of basic invariants z*,--- | x™ with degrees d; <
- < d,_1 < d, satisfies the conditions of Proposition 9.3. Put 2° = §/(—2mv/—1) defined

n (8.12). Then a set of basic invariants z*,--- ,x™ is flat with respect to the Frobenius

strucuture in Theorem 9.1 if and only if

1 = ely (dz®, dz”?) (0 <o, <n) (9.7)
are all elements of C. If a set of basic invariants x',--- , 2" is flat, then the metric J is
described by

B\ -1
(na,ﬁ)ogaﬁgn = (J (aom aﬁ))oga,ggn = (77 76)0§a,5§n (9'8)

and the structure constants C’lﬁ of the multiplication defined by
04005 =Y C1 40, (0<a,B<n) (9.9)

are described by
- d, ~ ;L
CZ = na’a/n/&ﬁla’y (—nIW(dl’a ,dﬂ;ﬁ )) (910)
B Z Ao + dgr

a,’/Bl 7’}//:0
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for 0 < a,p <n, a #n, where we denote
0 . ;0
0 = =, @ e Rt i S S . 11
0, e 0 aE,_OT] e (0<a<n) (9.11)

Proof. By Proposition 9.2, the dual metric of the metric of the Frobenius strucrure is
constructed from the unit e and Iy by (9.7).

For the construction of the multiplication from TW, we remind the reader of the
notion of the Frobenius potential (see Satake [13]). The Frobenius potential F is defined
by the relation

Cop=0.030"F (0<a,B,v<n) (9.12)
with the structure constants sz,ﬂ of the product and it is related with TW as

- dy +d
T (da, daP) = %8“8%«“ (0<a,<n). (9.13)

n

We remark that if @ # n and 7,4 # 0, then o/ # 0 and dy # 0. Thus for any
a,B,v (e #nand 0 < «, 5,7 < n), we have

Oy = 0.0;0F

= > Naamsp 007 OF

o B'=0
- Y dn = o ﬁ’
= Z NaaNg,z 0" | =———1Iw(dz® ,dz”) | . (9.14)
doz’ —I— dﬁ,
o B'=0
Then we have the results. O

9.3. Good basic invariants and Frobenius structure.

Corollary 9.6. For an admissible triplet (g, (, L) with L of zero type for the elliptic root

system of codimension 1, we have the following results.

(i) Let 2%zt --- 2™ be the same as in Theorem 8.4. Then
" 0 (=2mv/—-1)(Igr: 1) 0O
e=(z"|p1) B - e (9.15)

is an element of V. Let J be the metric and o be the multiplication of a unique
Frobenius structure with the unit e (9.15) in Theorem 9.1(iii). Then the metric J

and the structure constants of the multiplication Cgﬁ (0<a,B,7<n) are

0o 0
J(%7 w) =0a4pn (0<a,B <n), (9.16)
_9 d—n~ Quk B
=1 77 (e T, ) () , (9.17)

08,y (a=mn)
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which are all written by Taylor coefficients (8.24) by (8.25).

(i) If a set of basic invariants is good w.r.t. an admissible triplet (g,C, L) with L of
zero type, then it is flat w.r.t. the Frobenius structure of Thoerem 9.1.

(iii) The space Specan(F(H)[L]) = SpecanF(H)[2°,--- ,2"] has a metric induced by
the dual metric I (8.8). The space SpecanS" = SpecanF (H)[z',--- ,x"] has a
metric J. Then [g,(, L] : S ~ F(H)[L] gives the isometry w.r.t. these metric

structures.

Proof. We prove (i). For 2% z!,--- 2™ in (i), they satisfy the conditions in Proposition 9.3
by Proposition 8.3 and Theorem 8.4(i). By Theorem 9.1(iii), we have a unique Frobenius
structure with the unit (9.15).

By Theorem 8.4, we have

ely (dz®, dz®) = 6orpn (0<a, B <n). (9.18)

By Proposition 9.5, a set of z!,--- 2" is flat and we have (9.16) and (9.17). By (8.25) in

Theorem 8.4, (9.17) are all written by Taylor coefficients (8.24). (ii) is a direct consequence
]

of (i). (iii) is a direct consequence of (8.6), (9.16) and ¥[g, ¢, L](z*) = 2% for 1 < a < n.
0J

APPENDIX A. NON-UNIQUENESS OF GOOD BASIC INVARIANTS FOR THE CASE WHEN
CODIMENSION > 1

In this appendix, we show that the C-span of the good basic invariants depends on
the choice of admissible triplets of zero type for the case of an elliptic root system of type
AED.

Let F' be an R-vector space defined by F' := Ray @ R @ Ra. Let R := {d+a; +
md + na|m,n € Z}. Let I : F' x F' — R be a positive semi-definite symmetric bilinear
form with I(caq, ;) = 2 and rad I = Rd @ Ra. Then R is an elliptic root system of type
A belonging to (F,I). We put F := F ®@ RAg and let T : F x F — R be a symmetric
R-bilinear form such that I|p = I, I(Ag, 1) = I(Ag, a) = I(Ag, Ag) = 0 and I(Ag,8) = 1
(F,I) gives a hyperbolic extension of (F, ).

Then an elliptic Weyl group W, a Coxeter transformation and the domains Y, H are
defined. The semi-simple part of the Coxeter transformation ¢** is identity.

Put

1
L1 = R(Oél - 5&) D RA[),

1 1 1
LQ = R(Oél — 55) D R(AQ + ZOél — gé)
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Then we could easily check that (¢**,1, L) and (¢*, 1, Ly) are admissible triplets of zero
type.

Proposition A.1. Let z!, 2?

admissible triplet (3,1, Ly) (resp. (¢%,1, Ly)). Then the C-span of z*, z* and the C-

span of 1, To do not coincide.

(resp. T1, T2) be a set of good basic invariants for the

Proof. We put 2° = 2% = 2% =20 = §/(—2nv/—1). Let 2!, 22 (resp. 2%, 2%) be a basis of
L1 (resp. LQ)
We assume that the C-span of basic invariants 2!, 22 and the C-span of basic invari-

~1 32 1

ants 7', 22 coincide. Then C-span of basic invariants z°, 2!, 2% and the C-span of basic

invariants 2°, 7%, 72 coincide. This implies

det (%) = cdet (8%)
Oz 0<a,B<2 0z 0<a,B<2

for some ¢ € C* because z°, z, 22 could be obtained by affine transformation of 2%, 2!, 22.

By the discussion in the proof of Proposition 3.4 (ii), we have

det (8_90{8> = cdet <8%) )
0z 1<a,B<n 0z 1<a,B<n

We prepare the Weyl denominator. We put A; := Ay + %041 and p := Ag + A;. We also
put
At :={a; +nd(n>0), k6, —a; +kd(k>1)}.

Then the Weyl denominator of an affine Lie algebra of type Agl) is defined by

O =e" [T @—e™). (A1)

aEAT

By [8, p245], the Jacobian determinant equals the Weyl denominator © 4 up to a multi-
plication of the unit of F(H). Then we have

ox®
det <—) = f(7)Ou4, (A.2)
0zP 1<a,8<n A
cdet oz = f(1)© (A.3)
85’8 1<a,B<n B . ‘

for some f(7) € F(H)*.
Since the restriction of the LHS of (A.2) (resp. (A.3)) to L (resp. Ly™) is a constant

function, the C-span of © 4| L+ coincides with the one of © Al Lt Le

COAlr = COAl, . (A.4)
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On the other hand, we have an explicit description of © 4| Lt (resp. ©alz,+) by

eliminating Ay, a4, a from (A.1) by the relations a; — %a = Ay = 0 (resp. oy — %(5 =
Ao + jag — $0 = 0) and a = —2m/—1. Then we have

—2my/—1 n n n

Oalrs = exp(———) [Ta+ae [Ja-an [ +am,
n>0 k>1 k>1
1 na n no1
Oalpy =q+ [Ja - [Ja - ][O+ "),
n>0 k>1 k>1
with notation ¢ = e°. These contradict to (A.4). Thus we have the result. O
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