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GOOD BASIC INVARIANTS AND FROBENIUS STRUCTURES

IKUO SATAKE

Abstract. In this paper, we define a set of good basic invariants for a finite complex

reflection group under certain conditions. We show that a set of good basic invariants

for a finite real reflection group gives a set of the flat invariants obtained by Saito and

the Taylor coefficients of these good basic invariants give the structure constants of the

multiplication of the Frobenius structure obtained by Dubrovin.

1. Introduction

1.1. Aim and results of the paper. Let G be a finite real reflection group which acts

on the real vector space VR, g ∈ G be a Coxeter transformation and q ∈ VR ⊗R C be an

eigenvector of g whose eigenvalue ζ is a primitive h-th root of unity, where VR⊗RC is the

complexification of the vector space VR and h is the Coxeter number. It is known that

the eigenvector q is regular (that is, it does not lie on any reflecting hyperplane).

In the theory of the flat structure (the Frobenius structure) (see [5]) for the invariants

of the finite real reflection group, the values of G-invariants and G-anti-invariants at the

regular eigenvector q play an important role.

In this paper, we first assume that G is a finite complex reflection group. Then we

study the Taylor expansions (with a suitable grading) of G-invariants at a suitable regular

vector q and define a set of “good basic invariants” by using Taylor expansions at q under

certain conditions (the existence of an admissible triplet defined in Definition 2.1). If G

is a finite real reflection group, we show that

(i) a set of good basic invariants gives a set of flat invariants obtained by Saito [5] of

the Frobenius structure,

(ii) the Taylor coefficients of the good basic invariants give the structure constants of

the multiplication of the Frobenius structure obtained by Dubrovin [3].

Here is a brief account of the contents of the paper. In Section 2 we define an

admissible triplet for the finite complex reflection group. In Section 3 we define good

basic invariants. In Section 4 we give examples of good basic invariants. In Section 5 we

study the dependence of good basic invariants on the choice of the admissible triplet. In

Section 6 we give properties of Taylor coefficients of good basic invariants. In Section 7 we
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treat the cases of finite real reflection groups. We show the existence and the uniqueness

of good basic invariants and we give a description of the bilinear form in terms of the

good basic invariants (Theorem 7.5). In Section 8 we show that the good invariants give

a nice description of the Frobenius structure which is defined by Saito and Dubrovin.

1.2. Acknowledgements. The author thanks Prof. Yukiko Konishi and Prof. Satoshi

Minabe for the careful reading of the manuscript.

This work is supported in part by Grant-in Aid for Challenging Research (Ex-

ploratory) 17K18781 , Grant-in-Aid for Scientific Research(C) 18K03281 and Grant-in-

Aid for Scientific Research(C) 22K03295.

2. Graded C-algebra structure on C[V ]

Let V be a C-vector space of dimCV = n. From Section 2 to Section 5, we assume

that G ⊂ GL(V ) is a finite complex reflection group, i.e. G is generated by reflections,

where g ∈ GL(V ) is called a reflection if it is of finite order and if all but one of its

eigenvalues are equal to 1. We also assume that G is irreducible, i.e. V is an irreducible

G-module.

2.1. Graded C-algebra structure on C[V ]G. Let C[V ] be a symmetric tensor algebra

of V ∗ := Hom(V,C), which is identified with the algebra of polynomial functions on V .

Let z1, · · · , zn be a basis of V ∗. Then a set of

za := (z1)a1 · · · (zn)an (a = (a1, · · · , an) ∈ Zn
≥0) (2.1)

gives a C-basis of C[V ].

On the C-algebra C[V ], the natural grading is defined by counting the degree of za

as

|a| = a1 + · · ·+ an (2.2)

for a = (a1, · · · , an) ∈ Zn
≥0.

The action of g ∈ G on F ∈ C[V ] is defined by

(g · F )(v) = F (g−1 · v) (v ∈ V ). (2.3)

We denote the algebra of G-invariant elements of C[V ] by C[V ]G. The grading of C[V ]

induces the grading on the algebra C[V ]G. We denote its degree j part by S(j).

By the famous result of Shephard-Todd-Chevalley, for a finite complex reflection

group G, the algebra C[V ]G is generated by algebraically independent homogeneous ele-

ments x1, · · · , xn with degree d1 ≤ d2 ≤ · · · ≤ dn which we call a set of basic invariants.
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We remark that a set of basic invariants is not unique, but the degrees d1, · · · , dn
are uniquely determined. We put

d := (d1, · · · , dn). (2.4)

Then the degree j part S(j) could be also written as

S(j) := {
∑
b∈Zn

≥0

Abx
b ∈ C[V ]G |Ab ∈ C, d · b = j} (2.5)

where we denote

xb = (x1)b1 · · · (xn)bn , d · b = d1b1 + · · ·+ dnbn (2.6)

and we have the decomposition

C[V ]G =
∞⊕
j=0

S(j). (2.7)

2.2. Admissible triplet. In this subsection, we introduce the notion of an admissible

triplet.

Definition 2.1. For g ∈ G, ζ ∈ C and q ∈ V , we call a triplet (g, ζ, q) admissible if it

satisfies the following conditions.

(i) the vector q ∈ V is an eigenvector of g with the eigenvalue ζ which is a primitive

dn-th root of unity.

(ii) the Jacobian matrix (
∂xα

∂zβ
(q)

)
1≤α,β≤n

(2.8)

is invertible, where z1, · · · , zn ∈ V ∗ form a basis of V ∗.

In this section, we fix an admissible triplet (g, ζ, q). By the action of g on the

Jacobian matrix (2.8), we see that the eigenvalues of g on V are ζ1−dα (1 ≤ α ≤ n) (cf.

Theorem 4.2(v) of [5]). Hence we may and shall assume that

g · zα = ζdα−1zα (1 ≤ α ≤ n) (2.9)

for zα in Definition 2.1(ii). A basis of V ∗ satisfying (2.9) is called a “g-homogeneous

basis”. We put

g̃ := ζ−1 · g ∈ GL(V ). (2.10)

Then we have

g̃ · q = q, g̃ · zα = ζdαzα, g̃ · xα = ζdαxα (1 ≤ α ≤ n). (2.11)
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Thus we have

zα(q) = 0 (dα < dn), xα(q) = 0 (dα < dn), (2.12)

∂xα

∂zβ
(q) = 0 (dα ̸= dβ). (2.13)

For a, b ∈ Zn
≥0, we have(

∂b

∂zb
xa
)
(q) = 0 (d · b ̸≡ d · a (mod dn)), (2.14)

where we denote

∂b

∂zb
=

(
∂

∂z1

)b1

· · ·
(

∂

∂zn

)bn

for b = (b1, · · · , bn) ∈ Zn
≥0. (2.15)

Remark 2.2. We remark that the facts (2.8), (2.11), (2.12), (2.13) suggest that we should

see q as a fixed point of g̃ and also see a G-invariant element xα as an analogous object of

zα at q for 1 ≤ α ≤ n. This leads to the idea to study a Taylor expansion of xα − xα(q)

(1 ≤ α ≤ n) by z1 − z1(q), · · · , zn − zn(q).

2.3. Graded C-algebra structure on C[V ]. We introduce on C[V ] another Z-grading
by the aid of the admissible triplet (g, ζ, q).

Definition 2.3. Let z1, · · · , zn be a g-homogeneous basis of V ∗. For any j ∈ Z≥0, we define

V (g, ζ, q)(j) := {
∑
b∈Zn

≥0

cbz
b ∈ C[V ] | cb ∈ C, d · b = j}. (2.16)

We remark that the admissible triplet (g, ζ, q) naturally gives only Z/dnZ-grading
on C[V ] by g̃ · zα = ζdαzα for 1 ≤ α ≤ n. We lift it to the Z-grading.

We give a graded C-algebra structure on C[V ] by the decomposition

C[V ] =
∞⊕
j=0

V (g, ζ, q)(j). (2.17)

3. Graded C-algebra Isomorphism ψ

Let G be a finite complex reflection group and we fix an admissible triplet (g, ζ, q).
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3.1. The morphism φ[g, ζ, q].

Definition 3.1. For the admissible triplet (g, ζ, q), a set of basic invariants x1, · · · , xn and

a g-homogeneous basis z1, · · · , zn of V ∗, we define a C-module homomorphism:

φ[g, ζ, q] : C[V ]G → C[V ], xa 7→
∑
b∈Zn

≥0

1

b!

∂b([x− x(q)]a)

∂zb
(q)zb, (3.1)

for a C-basis {xa | a ∈ Zn
≥0} of C-module C[V ]G, where we used notations

[x− x(q)]a := (x1 − x1(q))a1 · · · (xn − xn(q))an for a = (a1, · · · , an) ∈ Zn
≥0,

b! := b1! · · · bn! for b = (b1, · · · , bn) ∈ Zn
≥0. (3.2)

We remark that φ[g, ζ, q](f) for f ∈ C[V ]G is not necessarily invariant by the G-

action.

Proposition 3.2. (i) φ[g, ζ, q] depends neither on the choices of a set of basic invari-

ants xα (1 ≤ α ≤ n) nor on the choices of a g-homogeneous basis zα (1 ≤ α ≤ n)

of V ∗. φ[g, ζ, q] gives a C-algebra homomorphism.

(ii) Let xα (1 ≤ α ≤ n) and zα (1 ≤ α ≤ n) be the same as in Definition 3.1. For any

multi-indices a, b ∈ Zn
≥0, the coefficients of zb of the RHS of

φ[g, ζ, q](xa) =
∑
b∈Zn

≥0

1

b!

∂b([x− x(q)]a)

∂zb
(q)zb

is 0 if d · b /∈ {d · a+ dnj | j ∈ Z≥0}.

Proof. (i) For a set of basic invariants xα (1 ≤ α ≤ n), we define a C-algebra homomor-

phism φ1[q] by

φ1[q] : C[V ]G → C[V ]G, xa 7→ (x− x(q))a (a ∈ Zn
≥0). (3.3)

Let k be an integer satisfying dk < dn and dk+1 = dn. Put S0 = C[x1, · · · , xk]. Then C[V ]G

is an S0-algebra with polynomial generators xk+1, · · · , xn. The C-algebra homomorphism

φ1[q] leaves invariant an element of S0 because the basic invariants xα (dα < dn) satisfies

xα(q) = 0 by (2.12). Then φ1[q] is an S0-algebra homomorphism which is determined by

φ1[q](x
k+1), · · · , φ1[q](x

n).

If we take another set of basic invariants y1, · · · , yn, then C[y1, · · · , yk] = S0 and

yk+1, · · · , yn are sums of C-linear combinations of xk+1, · · · , xn and elements of S0, i.e.

for k + 1 ≤ j ≤ n, we have

yj =
n∑

i=k+1

cjix
i +

∑
a=(a1,··· ,an),d·a=dj ,

ak+1=···=an=0

cjax
a,
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where cji , c
j
a ∈ C. Then we have

yj − yj(q) =
n∑

i=k+1

cji (x
i − xi(q)) +

∑
a=(a1,··· ,an),d·a=dj ,

ak+1=···=an=0

cja(x
a − xa(q)).

For any (xa − xa(q)) in the second sum, we have (x− x(q))a = (xa − xa(q)) by xγ(q) = 0

for all γ ≤ k. Thus we have

yj − yj(q) =
n∑

i=k+1

cji (x
i − xi(q)) +

∑
a=(a1,··· ,an),d·a=dj ,

ak+1=···=an=0

cja(x− x(q))a. (3.4)

This means that the morphism φ1[q] does not depend on the choice of a set of basic

invariants x1, · · · , xn but depends only on the choice of q.

We define a C-algebra homomorphism φ2 by

φ2 : C[V ]G → C[V ], f 7→
∑
b∈Zn

≥0

1

b!

∂bf

∂zb
(q)(z − z(q))b. (3.5)

This is a Taylor expansion at q and it coincides with the natural inclusion C[V ]G ⊂ C[V ].

We define a C-algebra homomorphism φ3[q] by

φ3[q] : C[V ] → C[V ], za 7→ (z + z(q))a (a ∈ Zn
≥0). (3.6)

This morphism does not depend on the choice of a g-homogeneous basis z1, · · · , zn of V ∗

because a basis is unique up to linear transformations.

Then we have

φ[g, ζ, q] = φ3[q] ◦ φ2 ◦ φ1[q]. (3.7)

Since φ1[q], φ2 and φ3[q] are C-algebra homomorphisms, their composite morphism φ[g, ζ, q]

is also a C-algebra homomorphism.

(ii) If the assersion (ii) is true for the multi-indices a, a′ ∈ Zn
≥0, then it is true for

the multi-index a+ a′ ∈ Zn
≥0. Thus we should only prove (ii) for each element of a set of

the basic invariants x1, · · · , xn.
For any xα (1 ≤ α ≤ n), we have

φ[g, ζ, q](xα) =
∑
b∈Zn

≥0

1

b!

∂b(xα − xα(q))

∂zb
(q)zb

= (xα − xα(q))(q) +
∑

b∈Zn
≥0, b ̸=0

1

b!

∂b(xα − xα(q))

∂zb
(q)zb

=
∑

b∈Zn
≥0, b ̸=0

1

b!

∂bxα

∂zb
(q)zb.
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The coefficients of zb are 0 if d · b /∈ {dα + dnj | j ∈ Z≥0} by (2.14). This gives a proof of

(ii). □

3.2. The morphism ψ[g, ζ, q]. In this subsection, we use properties of a filtered algebra

(cf. [1, Ch.3 §2-3]). The C-algebra homomorphism φ[g, ζ, q] is not a graded C-algebra
homomorphism with respect to the grading (2.7) on C[V ]G and (2.17) on C[V ].

However if we define decreasing filtrations on C[V ]G and C[V ] by

Fm(C[V ]G) :=
⊕
j≥m

S(j) (∀m ∈ Z≥0), (3.8)

Fm(C[V ]) :=
⊕
j≥m

V (g, ζ, q)(j) (∀m ∈ Z≥0) (3.9)

respectively, C[V ]G and C[V ] are filtered C-algebras and φ[g, ζ, q] is a filtered C-algebra
homomorphism because we have

φ[g, ζ, q](Fm(C[V ]G)) ⊂ Fm(C[V ]) (∀m ∈ Z≥0) (3.10)

by Proposition 3.2 (ii).

Definition 3.3. (i) Let grFφ[g, ζ, q] be the graded C-algebra homomorphism induced

by a filtered C-algebra homomorphism φ[g, ζ, q]:

grFφ[g, ζ, q] : grF (C[V ]G) → grF (C[V ]), (3.11)

where

grF (C[V ]G) :=
⊕

m∈Z≥0

Fm(C[V ]G)/Fm+1(C[V ]G), (3.12)

grF (C[V ]) :=
⊕

m∈Z≥0

Fm(C[V ])/Fm+1(C[V ]). (3.13)

(ii) Let ψ[g, ζ, q] be the graded C-algebra homomorphism defined by

ψ[g, ζ, q] := ψ−1
2 ◦ grFφ[g, ζ, q] ◦ ψ1 : C[V ]G → C[V ], (3.14)

where we used the natural graded C-algebra isomorphism

ψ1 : C[V ]G → grF (C[V ]G) (3.15)

(resp. ψ2 : C[V ] → grF (C[V ])), (3.16)

which maps an element of S(j) (resp. V (g, ζ, q)) to its canonical image in

F j(C[V ]G)/F j+1(C[V ]G) (resp. F j(C[V ])/F j+1(C[V ])).
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We have an explicit description of ψ[g, ζ, q]:

ψ[g, ζ, q] : C[V ]G → C[V ], xa 7→
∑

b∈Zn
≥0, d·b=d·a

1

b!

∂b([x− x(q)]a)

∂zb
(q)zb (3.17)

for a C-basis {xa | a ∈ Zn
≥0} of C-module C[V ]G, where we used notations in Definition

3.1.

Proposition 3.4. With respect to the gradings (2.7) on C[V ]G and (2.17) on C[V ],

ψ[g, ζ, q] is a graded C-algebra isomorphism

ψ[g, ζ, q] : C[V ]G
∼→ C[V ]. (3.18)

Proof. In our proof, we denote ψ[g, ζ, q] simply by ψ.

For a proof, we have only to prove that {ψ(x1), · · · , ψ(xn)} is a set of homoge-

neous polynomial generators of the graded C-algebra C[V ]. It is equivalent to show that

ψ(xα) (1 ≤ α ≤ n) is written as

ψ(xα) =
∑

1≤β≤n, dβ=dα

Aα
βz

β +
∑

a∈Zn
≥0, d·a=dα,|a|≥2

Bα
a z

a (3.19)

with the matrix (Aα
β) invertible, where we put Aα

β = 0 for dα ̸= dβ (1 ≤ α, β ≤ n).

By the admissibility (ii) of the triplet (g, ζ, q), the Jacobian matrix(
∂xα

∂zβ
(q)

)
1≤α,β≤n

(3.20)

is invertible. For any α, β (1 ≤ α, β ≤ n), the entry

∂xα

∂zβ
(q)

of the Jacobian matrix is 0 if dα ̸= dβ by (2.13).

Then the Jacobian matrix J is a block diagonal matrix with each block(
∂xα

∂zβ
(q)

)
dα=dβ=k

(3.21)

which is an invertible matrix.

Then

ψ(xα) =
∑

b∈Zn
≥0, d·b=dα

1

b!

∂b[xα − xα(q)]

∂zb
(q)zb (1 ≤ α ≤ n) (3.22)

satisfies the conditions (3.19) and we see that {ψ(x1), · · · , ψ(xn)} gives a set of homoge-

neous polynomial generators of the graded C-algebra C[V ]. □
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3.3. Good basic invariants.

Definition 3.5. A set of basic invariants x1, · · · , xn is good with respect to the admissible

triplet (g, ζ, q) if x1, · · · , xn form a C-basis of the vector space ψ[g, ζ, q]−1(V ∗) w.r.t. the

natural inclusion V ∗ ⊂ C[V ]. We call x1, · · · , xn “good basic invariants”.

4. Examples

In this section, we give some examples of a set of good basic invariants.

Let Cl+1 be a C-vector space with coordinates ε1, · · · , εl+1 and the symmetric group

Sl+1 acts on Cl+1 by σ(ε1, · · · , εl+1) = (εσ
−1(1), · · · , εσ−1(l+1)) for σ ∈ Sl+1. This action

preserves the subspace V where V = {(ε1, · · · , εl+1) ∈ Cl+1 |
∑l+1

i=1 ε
i = 0}. Then this

action gives an injection Sl+1 → GL(V ). By this injection, we regard the group Sl+1 as a

finite complex reflection group.

We define g ∈ Sl+1 by g(i) = i − 1 for i = 2, · · · , l + 1 and g(1) = l + 1. We put

q = (1, ζ, · · · , ζ l) ∈ V , where ζ = exp(2π
√
−1

l+1
). Then we have g · q = ζq and (g, ζ, q) gives

an admissible triplet. We remark that this is the case of Al-type (cf. Proposition 7.1).

We define linear functions on Cl+1 by

yk =
l+1∑
i=1

ζ(i−1)(k−1)εi (k = 1, · · · , l + 1).

Then we have g · yk = ζk−1yk for k = 1, · · · , l + 1.

We define Sl+1-invariant polynomial functions on Cl+1 by

P 1 = (−1)1−1

l+1∑
i=1

εi, P 2 = (−1)2−1

l+1∑
1≤i<j≤l+1

εiεj, · · · , P l+1 = (−1)(l+1)−1ε1 · · · εl+1.

Then y2, · · · , yl+1 give a basis of V ∗ and P 2, · · · , P l+1 give a set of basic invariants

of C[V ]Sl+1 .

We give an explicit description of φ[g, ζ, q] and ψ[g, ζ, q] for l = 1, 2, 3 cases. We re-

mark that the degree of ya = (y2)a2 · · · (yl+1)al+1 for a = (a2, · · · , al+1) ∈ Zl
≥0 is

∑l+1
k=2 kak,

i.e.

ya ∈ V (g, ζ, q)(
l+1∑
k=2

kak).

We use below square brackets in order to put together the same degree terms.
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l = 1 case. We have

P 2 =
1

4
(y2)2,

φ[g, ζ, q](P 2) = y2 +
1

4
(y2)2,

ψ[g, ζ, q](P 2) = y2.

Then P 2 give a set of good basic invarant.

l = 2 case. We have

P 2 =
1

3
y2y3,

P 3 =
1

33
((y3)3 + (y2)3),

φ[g, ζ, q](P 2) = y2 +
1

3
y2y3,

φ[g, ζ, q](P 3) = y3 +

[
1

3
(y3)2 +

1

33
(y2)3

]
+

1

33
(y3)3,

ψ[g, ζ, q](P 2) = y2,

ψ[g, ζ, q](P 3) = y3.

Then P 2, P 3 give a set of good basic invarants.

l = 3 case. We have

P 2 =
1

42
[
4y2y4 + 2(y3)2

]
,

P 3 =
1

43
[
4y3(y4)2 + 4(y2)2y3

]
,

P 4 =
1

44
[
(y4)4 − 2(y2)2(y4)2 + 4y2(y3)2y4 − (y3)4 + (y2)4

]
,

φ[g, ζ, q](P 2) = y2 +

[
1

4
y2y4 +

1

8
(y3)2

]
,

φ[g, ζ, q](P 3) = y3 +

[
1

4
(y2)2y3 +

1

2
y3y4

]
+

1

42
y3(y4)2,

φ[g, ζ, q](P 4) =

[
y4 − 1

8
(y2)2

]
+

[
6

42
(y4)2 − 1

42
(y2)2y4 +

1

42
y2(y3)2 +

1

44
(y2)4

]
+

[
1

42
(y4)3 − 2

44
(y2)2(y4)2 +

1

43
y2(y3)2y4 − 1

44
(y3)4

]
+

1

44
(y4)4,

ψ[g, ζ, q](P 2) = y2,

ψ[g, ζ, q](P 3) = y3,

ψ[g, ζ, q](P 4) = y4 − 1

8
(y2)2.
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Then P 2, P 3, P 4 + 1
8
(P 2)2 give a set of good basic invarants.

5. Independence on the choice of the admissible triplet

Let G be a finite complex reflection group. We study the dependence of good basic

invariants on the choice of the admissible triplet (g, ζ, q).

For any h ∈ GL(V ) and a g-homogeneous basis z1, · · · , zn of V ∗, we define

ξ[h] : C[V ] → C[V ], zb 7→ (h · z)b (b ∈ Zn
≥0) (5.1)

with notation (h·z)b = (h·z1)b1 · · · (h·zn)bn . Then ξ[h] preserves the subspace V ∗ ⊂ C[V ].

Proposition 5.1. Let (g, ζ, q) be an admissible triplet.

(i) For any h ∈ G, the triplet (hgh−1, ζ, h · q) is an admissible triplet. ξ[h] induces

the isomorphism

ξ[h] : V (g, ζ, q)(j) → V (hgh−1, ζ, hq)(j). (5.2)

We have

φ[hgh−1, ζ, h · q] ◦ ξ[h] = ξ[h] ◦ φ[g, ζ, q], (5.3)

ψ[hgh−1, ζ, h · q] ◦ ξ[h] = ξ[h] ◦ ψ[g, ζ, q]. (5.4)

(ii) For any t ∈ C∗, the triplet (g, ζ, t · q) is an admissible triplet. For t · idV ∈ GL(V )

with the identity morphism idV : V → V , ξ[t · idV ] preserves the subspace V ∗ ⊂
C[V ] and ξ[t · idV ] induces the isomorphism

ξ[t · idV ] : V (g, ζ, q)(j) → V (g, ζ, t · q)(j). (5.5)

We have

φ[g, ζ, t · q] ◦ ξ[t · idV ] = ξ[t · idV ] ◦ φ[g, ζ, q], (5.6)

ψ[g, ζ, t · q] ◦ ξ[t · idV ] = ξ[t · idV ] ◦ ψ[g, ζ, q]. (5.7)

(iii) If an integer r satisfies gcd(r, dn) = 1, then the triplet (gr, ζr, q) is also admissible

and we have

V (g, ζ, q)(j) = V (gr, ζr, q)(j), (5.8)

φ[g, ζ, q] = φ[gr, ζr, q], (5.9)

ψ[g, ζ, q] = ψ[gr, ζr, q]. (5.10)
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Proof. We prove (i) and (ii). For any a ∈ Zn
≥0, we prove φ[hgh−1, ζ, h · q] ◦ ξ[h](xa) =

ξ[h] ◦ φ[g, ζ, q](xa).

φ[hgh−1, ζ, h · q] ◦ ξ[h](xa)

= φ[hgh−1, ζ, h · q]((h · x)a)

= φ3[h · q] ◦ φ2 ◦ φ1[h · q]((h · x)a)

= φ3[h · q] ◦ φ2((h · x− (h · x)(h · q))a)

= φ3[h · q]

 ∑
b∈Zn

≥0

1

b!

∂b (h · x− (h · x)(h · q))a

∂(h · z)b
(h · q) (h · z − (h · z)(h · q))b


= φ3[h · q]

 ∑
b∈Zn

≥0

1

b!

∂b(x− x(q))a

∂zb
(q) (h · z − (h · z)(h · q))b


=

∑
b∈Zn

≥0

1

b!

∂b(x− x(q))a

∂zb
(q)(h · z)b

= ξ[h] ◦ φ[g, ζ, q](xa).

The other parts are proved in a similar manner, so we omit it.

We prove (iii). Since the triplet (g, ζ, q) is admissible, we have g · q = ζq. Then

gr · q = ζrq. Thus the triplet (gr, ζr, q) is also admissible.

We show (5.8). Let z1, · · · , zn ∈ V ∗ be a g-homogeneous basis of V ∗. Then for

1 ≤ α ≤ n, gr · zα = (ζdα−1)rzα = (ζr)dα−1zα. Then z1, · · · , zn ∈ V ∗ be a gr-homogeneous

basis of V ∗. Thus we have (5.8).

Since the morphism φ[g, ζ, q] depends only on the choice of q by the proof of Propo-

sition 3.2, we have (5.9). Then the morphism ψ[g, ζ, q] depends only on the grading

V (g, ζ, q)(j). By (5.8), we have (5.10) □

Definition 5.2. For admissible triplets (g, ζ, q), (g′, ζ ′, q′), we define an equivalence relation

(g, ζ, q) ∼ (g′, ζ ′, q′) (5.11)

by

ψ[g, ζ, q]−1(V ∗) = ψ[g′, ζ ′, q′]−1(V ∗). (5.12)

By Proposition 5.1, we have the following results.
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Corollary 5.3. For an admissible triplet (g, ζ, q) and ∀h ∈ G, ∀t ∈ C∗, ∀r ∈ Z with

gcd(dn, r) = 1, we have

(g, ζ, q) ∼ (h · g · h−1, ζ, h · q), (5.13)

(g, ζ, q) ∼ (g, ζ, t · q), (5.14)

(gr, ζr, q) ∼ (g, ζ, q). (5.15)

6. Taylor coefficients of the good basic invariants

Let G be a finite complex reflection group and we fix an admissible triplet (g, ζ, q).

Definition 6.1. A set of basic invariants x1, · · · , xn is compatible with a g-homogeneous

basis z1, · · · , zn of V ∗ if the Jacobian matrix is the identity matrix, i.e.(
∂xα

∂zβ
(q)

)
1≤α,β≤n

=
(
δαβ
)
1≤α,β≤n

,

where δαβ is the Kronecker’s delta.

Proposition 6.2. For a g-homogeneous basis z1, · · · , zn of V ∗, we have the following

results.

(i) If we put

xα := ψ[g, ζ, q]−1(zα) (1 ≤ α ≤ n), (6.1)

then x1, · · · , xn form a set of basic invariants which are good and compatible with

a g-homogeneous basis z1, · · · , zn of V ∗.

(ii) Conversely if x1, · · · , xn are good and compatible with a g-homogeneous basis

z1, · · · , zn of V ∗, then ψ[g, ζ, q](xα) = zα for 1 ≤ α ≤ n.

(iii) For any set of basic invariants x1, · · · , xn,
∂b[x− x(q)]a

∂zb
(q) = 0 if d · b /∈ {d · a+ dnj | j ∈ Z≥0} (6.2)

for a, b ∈ Zn
≥0.

(iv) A set of basic invariants x1, · · · , xn is good if and only if

∂axα

∂za
(q) = 0 (dα = d · a, |a| ≥ 2, 1 ≤ α ≤ n). (6.3)

(v) If a set of basic invariants x1, · · · , xn is good and compatible with a g-homogeneous

basis z1, · · · , zn of V ∗, then for a, b ∈ Zn
≥0 satisfying d · a = d · b, we have

1

b!

∂b[x− x(q)]a

∂zb
(q) = δa,b. (6.4)
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Proof. As for (i), (ii), they are direct consequences of Definition 3.5 and Definition 6.1.

As for (iii), it is proved in Proposition 3.2 (ii).

(iv) By (3.17), we have

ψ[g, ζ, q](xα) =
∑

b∈Zn
≥0, d·b=dα

1

b!

∂bxα

∂zb
(q)zb.

By the goodness assumption, this must be an element of V ∗. Then the coefficients with

|b| ≥ 2 must be 0.

(v) We have ψ[g, ζ, q](xα) = zα for 1 ≤ α ≤ n by (ii). Then for any a ∈ Zn
≥0,

ψ[g, ζ, q](xa) =
n∏

γ=1

ψ[g, ζ, q](xγ)ai =
n∏

γ=1

(zγ)ai = za, (6.5)

and comparing it with (3.17), we have the result. □

7. The cases of finite real reflection groups

From now on we shall assume that G is a finite real reflection group, i.e. there exists

a G-stable R-subspace VR of V such that the canonical map VR ⊗R C → V is bijective

and G is generated by reflections of order 2. We also assume that the action of G on V

is irreducible.

It is known that there exists a set of basic invariants x1, · · · , xn and if we denote

their degrees by d1 ≤ · · · ≤ dn, then they have the following properties (cf. Bourbaki [2]).

(i) The action of a Coxeter transformation g ∈ G on V has the eigenvalues

exp

(
2π

√
−1(d1 − 1)

dn

)
, · · · , exp

(
2π

√
−1(dn − 1)

dn

)
. (7.1)

(ii) They have a duality

dα + dn+1−α = d1 + dn (1 ≤ α ≤ n). (7.2)

(iii) We have

dn−1 < dn, (7.3)

d1 = 2. (7.4)

(iv) An eigenvector v of g with the eigenvalue exp

(
2π

√
−1

dn

)
is not contained in the

reflecting hyperplanes. In particular the value of the determinant of the Jacobian(
∂xα

∂zβ
(v)

)
1≤α,β≤n

(7.5)

is nonzero.
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(v) There exists a G-invariant positive definite symmetric R-bilinear form

IR : VR × VR → R. (7.6)

7.1. Existence and Uniqueness of a set of good basic invariants.

Proposition 7.1. For the finite real reflection group G, there exists an admissible triplet.

Proof. Let g ∈ G be the Coxeter transformation, v be an eigenvector with the eigenvalue

exp
(

2π
√
−1

dn

)
. Then

(g, exp

(
2π

√
−1

dn

)
, v)

satisfies the conditions of the admissibility (i) and (ii) by (7.5). □

We show the uniqueness of the good invariants.

Proposition 7.2. For a finite real reflection group G, any admissible triplets (g, ζ, q) and

(g′, ζ ′, q′) satisfy (g′, ζ ′, q′) ∼ (g, ζ, q).

Proof. Take an integer 1 ≤ r ≤ dn such that ζ ′ = ζr. Since ζ, ζ ′ are primitive dn-th roots

of unity, (dn, r) = 1. Then the triplet (gr, ζr, q) = (gr, ζ ′, q) is admissible by Proposition

5.1(iii).

Compare the admissible triplets (gr, ζ ′, q) and (g′, ζ ′, q′). Then we have gr = hg′h−1

for some h ∈ G by a known result (cf. [6, 4.2 Theorem (iv)]). By (5.13), we have

(g′, ζ ′, q′) ∼ (hg′h−1, ζ ′, h · q′) = (gr, ζr, h · q′).
Compare the admissible triplets (gr, ζr, h ·q′) and (gr, ζr, q). We see that the dimen-

sion of the eigenspace of gr is 1 because it is the multiplicity ( = #{β ∈ {1, · · · , n} | dβ =

dα } ) for dα (1 ≤ α ≤ n) with (dα, dn) = 1 and equals 1 for the case G is a finite real

reflection group. Then using (5.14), we have (gr, ζr, h · q′) ∼ (gr, ζr, q).

By (5.15), (gr, ζr, q) ∼ (g, ζ, q). Then we have the result. □

Corollary 7.3. For a finite real reflection group G, there exists uniquely the space of the

C-span of a set of good basic invariants.

Remark 7.4. For an admissible triplet (g, ζ, q) for the finite real reflection group G, g is

not necessarily a Coxeter transformation. We give an example. Let G be the finite real

reflection group of type H3. Then the degrees of basic invariants are

d1 = 2, d2 = 6, d3 = 10.

Let g0 be a Coxeter transformation, ζ be exp(2π
√
−1

d3
) and (g0, ζ, v) be an admissible triplet

which is constructed in the proof of Proposition 7.1. By Proposition 5.1(iii), (g30, ζ
3, v) is
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also an admissible triplet. We show that g30 is not a Coxeter transformation. We compare

the eigenvalues of g0 and the ones of g30. A set of the eigenvalues of g0:

{ζ1−d1 = ζ−1, ζ1−d2 = ζ−5, ζ1−d3 = ζ−9}

and a set of the eigenvalues of g30:

{ζ−3, ζ−15, ζ−27}

do not coincide. Since a Coxeter transformation is unique up to conjugacy, we see that

g30 is not a Coxeter transformation.

7.2. Bilinear form. We take the G-invariant positive definite symmetric bilinear form

IR (7.6) and extend it to the C-bilinear form

I : V × V → C. (7.7)

Since it is nondegenerate, it induces the C-bilinear form

I∗ : V ∗ × V ∗ → C. (7.8)

This gives

I∗ : ΩC[V ] ⊗C[V ] ΩC[V ] → C[V ], (7.9)

where ΩC[V ] is the module of Kähler differentials of C[V ] over C. It descends to the

C[V ]G-symmetric bilinear form

I∗G : ΩC[V ]G ⊗C[V ]G ΩC[V ]G → C[V ]G (7.10)

because I is G-invariant, where ΩC[V ]G is the module of Kähler differentials of C[V ]G over

C.
For a set of basic invariants x1, · · · , xn, we have

I∗G(dx
α, dxβ) =

n∑
γ1,γ2=1

∂xα

∂zγ1
∂xβ

∂zγ2
I∗(zγ1 , zγ2) (7.11)

for 1 ≤ α, β ≤ n.

7.3. Good basic invariants and Bilinear form. From now on we fix an admissible

triplet (g, ζ, q) for a finite real reflection group G which acts on V .

For a set of basic invariants x1, · · · , xn, we have

xn(q) ̸= 0 (7.12)

because if xn(q) = 0, then xα(q) = 0 (1 ≤ α ≤ n) by (2.12) and (7.3), which contradicts

q ̸= 0.
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Theorem 7.5. Let (g, ζ, q) be the admissible triplet. We assume that a g-homogeneous

basis z1, · · · , zn of V ∗ satisfies

I∗(zα, zβ) = δα+β,n+1 (1 ≤ α, β ≤ n). (7.13)

Let x1, · · · , xn be a set of good basic invariants compatible with this basis z1, · · · , zn of

V ∗. Then by Taylor coefficients

∂axα

∂za
(q) (1 ≤ α ≤ n, a ∈ Zn

≥0, d · a = dα + dn), (7.14)

any I∗G(dx
α, dxβ) (α, β = 1, · · · , n) is written as follows:

I∗G(dx
α, dxβ) (7.15)

= δα+β,n+1
xn

xn(q)
+

∑
b=(b1,··· ,bn),

bn=0,
d·b=dα+dβ−2

1

b!

[
∂b

∂zb

(
∂xα

∂zβ∗
+
∂xβ

∂zα∗

)]
(q)xb,

where α∗ = n+ 1− α (1 ≤ α ≤ n).

Proof. For any α, β (1 ≤ α, β ≤ n), I∗G(dx
α, dxβ) is represented as

I∗G(dx
α, dxβ) =

∑
a=(a1,··· ,an)∈Zn

≥0,

an=0,
d·a=dα+dβ−dn−2

Aα,β
a xaxn +

∑
b=(b1,··· ,bn)∈Zn

≥0,

bn=0,
d·b=dα+dβ−2

Bα,β
b xb (7.16)

for Aα,β
a , Bα,β

b ∈ C by the degree of C[V ]G.

By taking higher order derivatives of the both sides of (7.16) with respect to z1, · · · , zn

and evaluating them at q, we determine Aα,β
a , Bα,β

b in the following lemmas.

Lemma 7.6. For the cases dα + dβ ≤ dn + 2,

Aα,β
a = 0 if dα + dβ < dn + 2 or a ̸= 0. (7.17)

Proof. The multi-indices a ∈ Zn
≥0 satisfying d · a = dα + dβ − dn − 2 ≤ 0 are only

a = (0, · · · , 0) ∈ Zn
≥0. Thus we have the results. □

Lemma 7.7. We have

(RHS of (7.16))(q) =

A
α,β
0 xn(q) if dα + dβ = dn + 2,

0 if dα + dβ ̸= dn + 2.
(7.18)

Proof. By (Aα,β
a xaxn)(q) = 0 if a ̸= 0 and (Bα,β

b xb)(q) = 0 by xα(q) = 0 (1 ≤ α ≤ n− 1)

which are shown in (2.12), we have the results. □

Lemma 7.8. We have

(LHS of (7.16))(q) = δα+β,n+1. (7.19)
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Proof. We have

(LHS of (7.16))(q) =
n∑

γ1,γ2=1

∂xα

∂zγ1
(q)

∂xβ

∂zγ2
(q)I∗(zγ1 , zγ2)

=
n∑

γ1,γ2=1

δα,γ1δβ,γ2δγ1+γ2,n+1

= δα+β,n+1.

□

Lemma 7.9. For the cases dα+ dβ > dn+2, take any multi-index c = (c1, · · · , cn) ∈ Zn
≥0

such that cn = 0, d · c = dα + dβ − dn − 2, we have[
1

c!

∂c

∂zc
(RHS of (7.16))

]
(q) = Aα,β

c xn(q). (7.20)

Proof. For Aα,β
a xaxn with any a = (a1, · · · , an) ∈ Zn

≥0, an = 0, d · a = dα + dβ − dn − 2,

1

c!

∂c(Aα,β
a xaxn)

∂zc
(q) (7.21)

is a linear combination of

Aα,β
a

[
∂c

′
(xa)

∂zc′
(q)

] [
∂c

′′
(xn)

∂zc′′
(q)

]
(c′, c′′ ∈ Zn

≥0) (7.22)

with c′ + c′′ = c. Since c′′n = 0 and d · c′′ ≤ d · c = dα + dβ − dn − 2 < dn, (7.22) must be 0

by (6.2) if c′′ ̸= 0. Then (7.21) equals

Aα,β
a

1

c!

∂c(xa)

∂zc
(q)xn(q).

Since d · a = d · c and xa = (x− x(q))a by an = 0, we have

Aα,β
a

1

c!

∂c(xa)

∂zc
(q)xn(q) = Aα,β

a δa,cx
n(q)

by (6.4).

For Bα,β
b xb with any b = (b1, · · · , bn) ∈ Zn

≥0, bn = 0, d · b = dα + dβ − 2, we have

1

c!

∂c(Bα,β
b xb)

∂zc
(q) = 0

by d · c < d · b and (6.2).

Then we have the equation (7.20). □

Lemma 7.10. For the cases dα+dβ > dn+2, take any multi-index c = (c1, · · · , cn) ∈ Zn
≥0

such that cn = 0, d · c = dα + dβ − dn − 2, we have[
1

c!

∂c

∂zc
(LHS of (7.16))

]
(q) = 0. (7.23)
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Proof. The LHS of (7.23) is a linear combination of the products:[
∂c

′

∂zc′
∂xα

∂zγ1

]
(q)

[
∂c

′′

∂zc′′
∂xβ

∂zγ2

]
(q)I∗(zγ1 , zγ2) (c′, c′′ ∈ Zn

≥0) (7.24)

with c′ + c′′ = c. We assume that (7.24) is nonzero for some c′, c′′. Then there exists

non-negative integers n1, n2 such that

d · c′ + dγ1 = dα + n1dn, d · c′′ + dγ2 = dβ + n2dn

by (6.2). We also have

dγ1 + dγ2 = dn + 2

by (7.13). Combining these equalities, we have n1 + n2 = 0. Then we have n1 = n2 = 0.

Then we have [
∂c

′

∂zc′
∂xα

∂zγ1

]
(q) ̸= 0 for d · c′ + dγ1 = dα.

Since xα satisfies the condition (6.3), we have c′ = 0 and α = γ1. Also we have c′′ = 0.

Then c = c′+c′′ = 0 which contradicts d·c > 0. Therefore we have the equation (7.23). □

By these Lemmas, for any α, β, c with 1 ≤ α, β ≤ n, c ∈ Zn
≥0, we obtain

Aα,β
c =

δα+β,n+1/x
n(q) if dα + dβ = dn + 2 and c = 0,

0 otherwise,
(7.25)

where we used xn(q) ̸= 0 by (7.12).

Lemma 7.11. For any multi-index c ∈ Zn
≥0 with cn = 0, d · c = dα + dβ − 2, we have[

1

c!

∂c

∂zc
(RHS of (7.16))

]
(q) = Bα,β

c . (7.26)

Proof. For Aα,β
a xaxn with any a = (a1, · · · , an) ∈ Zn

≥0, an = 0, d · a = dα + dβ − dn − 2,

we show
1

c!

∂c(Aα,β
a xaxn)

∂zc
(q). (7.27)

We have only to prove it for the cases Aα,β
a ̸= 0. Then dα + dβ = dn + 2 and a = 0 by

(7.25). Then by d · c = dn and cn = 0, we have (7.27).

For Bα,β
b xb with any b = (b1, · · · , bn) ∈ Zn

≥0, bn = 0, d · b = dα + dβ − 2, we have

1

c!

∂c(Bα,β
b xb)

∂zc
(q) = Bα,β

b δc,b = Bα,β
c

by d · c = d · b and (6.4). Thus we have (7.26). □

Lemma 7.12. For any multi-index c ∈ Zn
≥0 with cn = 0, d · c = dα + dβ − 2, we have[

1

c!

∂c

∂zc
(LHS of (7.16))

]
(q) =

1

c!

[(
∂c

∂zc
∂xα

∂zn+1−β

)
(q) +

(
∂c

∂zc
∂xβ

∂zn+1−α

)]
(q). (7.28)
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Proof. For the LHS of (7.28), it is a linear combination of the products:[
∂c

′

∂zc′
∂xα

∂zγ1

]
(q)

[
∂c

′′

∂zc′′
∂xβ

∂zγ2

]
(q)I∗(zγ1 , zγ2) (c′, c′′ ∈ Zn

≥0) (7.29)

with c′ + c′′ = c. We assume that (7.29) is nonzero for some c′, c′′. Then there exists non-

negative integers n1, n2 such that d · c′ + dγ1 = dα +n1dn, d · c′′ + dγ2 = dβ +n2dn by (6.2)

and dγ1 + dγ2 = dn + 2 by (7.13). Combining these equalities, we have n1 + n2 = 1. Then

we have (n1, n2) = (1, 0), (0, 1). For the case (n1, n2) = (1, 0), d · c′′ + dγ2 = dβ. Since x
β

satisfies (6.4), c′′ must be 0 and γ2 = β. Then we have c′ = c and γ1 = n+1− β. For the

case (n1, n2) = (0, 1), c′ must be 0 and γ1 = α. Then we have c′′ = c and γ2 = n+ 1− α.

Then we have

c!× [LHS of (7.28)]

=

[
∂c

∂zc
∂xα

∂zn+1−β

]
(q)

∂xβ

∂zβ
(q)I∗(zn+1−β, zβ) +

∂xα

∂zα
(q)

[
∂c

∂zc
∂xβ

∂zn+1−α

]
(q)I∗(zα, zn+1−α)

=

[
∂c

∂zc
∂xα

∂zn+1−β

]
(q) +

[
∂c

∂zc
∂xβ

∂zn+1−α

]
(q).

Then we have the equation (7.28). □

By (7.26) and (7.28), we have

Bα,β
c =

1

c!

[
∂c

∂zc

(
∂xα

∂zn+1−β
+

∂xβ

∂zn+1−α

)]
(q) . (7.30)

□

8. Good basic invariants and Frobenius structure

8.1. Euler field. We introduce the Euler field, the space of lowest degree part of the

derivatives and the G-invariant bilinear form.

Let x1, · · · , xn be a set of basic invariants with degrees d1 ≤ · · · ≤ dn−1 < dn (see

(7.3)).

We define the Euler field E by

E :=
n∑

α=1

dα
dn
xα

∂

∂xα
: ΩC[V ]G → C[V ]G, (8.1)

which does not depend on the choice of a set of basic invariants.

Let Der(C[V ]G) be the module of C-derivations of C[V ]G. It has the grading

Der(C[V ]G) =
⊕
j∈Z

Der(C[V ]G)(j),
∂

∂xα
∈ Der(C[V ]G)(−dα) (1 ≤ α ≤ n) (8.2)
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induced by the grading of C[V ]G =
⊕

j∈Z S(j) and we see that the dimension of the lowest

degree part is

dimCDer(C[V ]G)(−dn) = 1 (8.3)

by (7.3).

8.2. Frobenius structure. The Frobenius structure on C[V ]G is constructed by Saito

[5] and Dubrovin [3] (see also [4]).

Theorem 8.1. ( Saito [5], Dubrovin [3] )

(i) There exist a C[V ]G-nondegenerate symmetric bilinear form (called the metric)

J : Der(C[V ]G) ⊗C[V ]G Der(C[V ]G) → C[V ]G, a C[V ]G-symmetric bilinear form

(called the multiplication) ◦ : Der(C[V ]G)⊗C[V ]GDer(C[V ]G) → Der(C[V ]G) and

a field e ∈ Der(C[V ]G) subject to the following conditions:

(a) the metric is invariant under the multiplication, i.e. J(X ◦Y, Z) = J(X,Y ◦
Z) for any vector fields X,Y, Z : ΩC[V ]G → C[V ]G,

(b) (potentiality) the (3, 1)-tensor ∇◦ is symmetric (where ∇ is the Levi-Civita

connection of the metric), i.e. ∇X(Y ◦Z)− Y ◦∇X(Z)−∇Y (X ◦Z) +X ◦
∇Y (Z)− [X,Y ] ◦ Z = 0, for any vector fields X,Y, Z : ΩC[V ]G → C[V ]G,

(c) the metric J is flat,

(d) e is a unit field for ◦ and it is flat, i.e. ∇e = 0,

(e) the Euler field E satisfies LieE(◦) = 1 · ◦, and LieE(J) = (2− dn−2
dn

) · J ,
(f) the intersection form coincides with the bilinear form I∗G: J(E, J

∗(ω)◦J∗(ω′)) =

I∗G(ω, ω
′) for 1-forms ω, ω′ ∈ ΩC[V ]G and J∗ : ΩC[V ]G → Der(C[V ]G) is the

isomorphism induced by the dual metric J∗ of J .

(ii) Let (J, ◦, e) be a Frobenius structure satisfying the conditions in (i). Then e ∈
Der(C[V ]G)(−dn)\{0}. Conversely for any element ẽ ∈ Der(C[V ]G)(−dn)\{0},
there exists uniquely a Frobenius structure (J̃ , ◦̃, ẽ) satisfying the conditions in (i).

The Frobenius structure (J̃ , ◦̃, ẽ) is written as (J̃ , ◦̃, ẽ) = (c−1J, c−1◦, ce) for some

c ∈ C×.

The metric J could be constructed from I∗G and e as follows.

Proposition 8.2. For 1-forms ω, ω′ ∈ ΩC[V ]G, we have

J∗(ω, ω′) = (Liee(I
∗
G))(ω, ω

′) (8.4)

for the dual metric J∗ of J .
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Proof. By combining the results Liee(J) = 0, Liee(◦) = 0 and Liee(E) = e (cf.[4, p146])

with the Lie derivative of the both sides of the equation

J(E, J∗(ω) ◦ J∗(ω′)) = I∗G(ω, ω
′)

in Theorem 8.1(i)(f) with respect to the unit e, we have the result. □

Let ∇ be a connection introduced in Theorem 8.1. By Theorem 8.1(ii), the metric

J of the Frobenius structure satisfying conditions in Theorem 8.1(i) is unique up to a

constant factor. Then ∇ and the notion of flatness do not depend on the choice of the

Frobenius structures in Theorem 8.1.

Definition 8.3. A set of basic invariants x1, · · · , xn is called flat with respect to the Frobe-

nius structure if

∇dxα = 0 (1 ≤ α ≤ n). (8.5)

8.3. Frobenius structure via flat basic invariants. We give a description of the

multiplication and the metric with respect to the set of flat basic invariants.

Proposition 8.4. A set of basic invariants x1, · · · , xn with degrees d1 ≤ · · · ≤ dn−1 < dn

is flat with respect to the Frobenius strucuture (J, ◦, e) in Theorem 8.1 if and only if

ηα,β := eI∗G(dx
α, dxβ) (1 ≤ α, β ≤ n) (8.6)

are all elements of C. If a set of basic invariants x1, · · · , xn is flat, then the metric J is

described by

(ηα,β)1≤α,β≤n := (J (∂α, ∂β))1≤α,β≤n =
(
ηα,β

)−1

1≤α,β≤n
(8.7)

and the structure constants Cγ
α,β of the multiplication defined by

∂α◦∂β =
n∑

γ=1

Cγ
α,β∂γ (1 ≤ α, β ≤ n) (8.8)

are described by

Cγ
α,β =

n∑
α′,β′=1

ηα,α′ηβ,β′∂γ
(

dn
dα′ + dβ′ − 2

I∗G(dx
α′
, dxβ

′
)

)
(8.9)

for 1 ≤ α, β ≤ n, where we denote

∂α =
∂

∂xα
, ∂α =

n∑
α′=1

ηα,α
′ ∂

∂xα′ (1 ≤ α ≤ n). (8.10)
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Proof. By Proposition 8.2, the dual metric of the metric of the Frobenius strucrure is

constructed from the unit e and I∗G by (8.6).

For the construction of the multiplication from I∗G, we remind the notion of the

Frobenius potential (see Dubrovin [3]).

The Frobenius potential F is defined by the relation

Cγ
α,β = ∂α∂β∂

γF (1 ≤ α, β, γ ≤ n) (8.11)

with the structure constants Cγ
α,β of the product and it is related with I∗G as

I∗G(dx
α, dxβ) =

dα + dβ − 2

dn
∂α∂βF (1 ≤ α, β ≤ n). (8.12)

Then for any α, β, γ (1 ≤ α, β, γ ≤ n), we have

Cγ
α,β = ∂α∂β∂

γF

=
n∑

α′,β′=1

ηα,α′ηβ,β′∂γ∂α
′
∂β

′
F

=
n∑

α′,β′=1

ηα,α′ηβ,β′∂γ
(

dn
dα′ + dβ′ − 2

I∗G(dx
α′
, dxβ

′
)

)
. (8.13)

Then we have the results. □

8.4. Good basic invariants and Frobenius structure.

Corollary 8.5. (i) Let x1, · · · , xn be the same as in Theorem 7.5. Let J be a met-

ric and ◦ be a multiplication of a unique Frobenius structure with the unit e =

xn(q) ∂
∂xn in Theorem 8.1. Then the metric J and the structure constants of the

multiplication Cγ
α,β (1 ≤ α, β, γ ≤ n) are

J(
∂

∂xα
,
∂

∂xβ
) = δα+β,n+1 (1 ≤ α, β ≤ n), (8.14)

Cγ
α,β =

∂

∂xγ∗

(
dn

dα∗ + dβ∗ − 2
I∗G(dx

α∗, dxβ∗)

)
, (8.15)

which are all written by Taylor coefficients (7.14) by (7.15).

(ii) If a set of basic invariants is good (which is independent of the choice of the

admissible triplet by Corollary 7.3), then it is flat with respect to the Frobenius

structure of Thoerem 8.1.

(iii) The space SpecC[V ] has a metric induced by the dual metric I∗ (7.9). The space

SpecC[V ]G has a metric J . Then ψ[g, ζ, q] : C[V ]G ≃ C[V ] gives the isometry

with respect to these metric structures.
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Proof. We prove (i). Let x1, · · · , xn be the same in Theorem 7.5. Since xn(q) ̸= 0 by

(7.12), e = xn(q) ∂
∂xn ∈ Der(C[V ]G)(−dn) \ {0}. By Theorem 8.1(ii), we have a unique

Frobenius structure with the unit e = xn(q) ∂
∂xn . By Theorem 7.5, we have

eI∗G(dx
α, dxβ) = δα+β,n+1 (1 ≤ α, β ≤ n). (8.16)

By Proposition 8.4, a set of x1, · · · , xn is flat and we have (8.14) and (8.15). By (7.15) in

Theorem 7.5, (8.15) are all written by Taylor coefficients (7.14).

(ii) is a direct consequence of (i). (iii) is a direct consequence of (7.13), (8.14) and

ψ[g, ζ, q](xα) = zα for 1 ≤ α ≤ n. □
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