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Abstract. We introduce twist left-veering mapping classes of
punctured surfaces. We prove that a twist left-veering open book
supports an overtwisted contact structure and determine when the
closed braid coming from the punctures is loose or virtually loose.

1. Introduction

A pair (S, ϕ) of a compact oriented surface S with boundary and
diffeomorphism ϕ ∈ Diff+(S, ∂S) is called an (abstract) open book. For
an open book (S, ϕ) one obtains a contact 3-manifold (M(S,ϕ), ξ(S,ϕ))
[29]. Open books play significant role in the study of contact structures
thanks to the Giroux correspondence, [11], see also [5, 7]: There is a
one-to-one correspondence between the set of contact 3-manifolds up to
isotopy and the set of open books up to stabilization and equivalence.
Here we say that two open books (S, ϕ) and (S ′, ϕ′) are equivalent if
h◦ϕ = ϕ′◦h for some orientation preserving diffeomorphism h : S → S ′

fixing the boundary [5].
Let T be a transverse link in (M, ξ) ' (M(S,ϕ), ϕ(S,ϕ)), where '

means contactomorphic. According to Bennequin [2] (when (M, ξ) '
(S3, ξstd), the standard contact 3-sphere) and Pavelescu [27, 28] (for
general (M, ξ)), T is transversely isotopic to some closed n-braid L
with respect to the open book (S, ϕ). Choose a set P of n points in
the interior of S near the boundary ∂S. We can find a diffeomorphism
ϕL ∈ Diff+(S, P, ∂S) such that L and the closed braid P×[0, 1]/(x, 1) ∼
(ϕL(x), 0) can be identified up to some braid isotopy.

It is a fundamental problem to understand geometry and topology of
(M, ξ, T ) in terms of the corresponding mapping classes [ϕ] ∈ MCG(S)
and [ϕL] ∈ MCG(S, P ). The latter is called the distinguished mon-
odromy for L. (In the following the bracket [·] will be omitted for
simplicity, and a diffeomorphism and its mapping class will be denoted
by the same symbol.) In this paper, we are particularly interested in
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detecting tight/overtwisted-ness of (M, ξ) and non-loose/loose-ness of
T . Three earlier works done by Goodman [12], Wand [30], Honda,
Kazez and Matić [16] are relevant to our goal:

In [12] Goodman introduced a sobering arc for an open book (S, ϕ)
which is a properly embedded arc α in S such that the intersection of
α and its image ϕ(α) satisfies certain numerical conditions. He showed
that (S, ϕ) supports an overtwisted contact structure if and only if (S, ϕ)
is stably equivalent to an open book (S ′, ϕ′) admitting a sobering arc.
Here we say that two open books are stably equivalent if they admit
stabilizations that are equivalent.

A contact 3-manifold (M, ξ) is overtwisted if M contains an over-
twisted disk, an embedded disk D whose boundary is tangent to ξ. A
transverse overtwisted disk is a disk in an open book admitting a certain
type of open book foliation [17, Definition 4.1]. It has been shown that
the existence of a transverse overtwisted disk is equivalent to the exis-
tence of a usual overtwisted disk [17, Proposition 4.2, Corollary 4.6]. In
this paper, one may simply understand a transverse overtwsited disk
as an embedded disk D whose boundary is transverse to ξ with the
self-linking number sl(∂D) = 1 with respect to a trivialization of the
2-plane bundle ξ|D → D.

In [30] Wand introduced an overtwisted region in (S, ϕ), which can
be seen as a generalization of Goodman’s sobering arcs to arc systems.
It is a 2N -gon formed by an N -arc system Γ ⊂ S and its image ϕ(Γ)
that satisfies certain conditions (in Definition 6.1). Here, an N -arc
system is a collection of pairwise disjoint N arcs. He showed that (S, ϕ)
supports an overtwisted contact structure if and only if ϕ is inconsistent;
that is, there exist some arc system Γ ⊂ S and some stabilization
(S ′, ϕ′) of (S, ϕ) such that Γ and ϕ′(Γ) form an overtwisted region.
This observation lead him to prove that Legendrian surgery preserves
tightness.

There is an alternative refinement of Goodman’s sobering arc crite-
rion by Honda, Kazez and Matić [16], which is the non-right-veering arc
criterion. Instead of looking at the whole picture of γ∩ϕ(γ) they found
the importance of focussing on γ ∪ ϕ(γ) restricted to a neighborhood
of the boundary ∂S. They proved that an open book is overtwisted if
and only if it is stably equivalent to a non-right-veering open book.

Among the three criteria, the non-right-veering criterion is the most
practically easy to check since it is essentially equivalent to the condi-
tion that the fractional Dehn twist coefficient (FDTC) is non-positive,
see Propositions 3.1 and 3.2 in [16].

Note that the above three overtwistedness criteria are not at all
claiming that every open book (S, ϕ) supporting an overtwisted contact
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structure admits sobering arcs, overtwisted regions or non-right-veering
arcs.

We also note that punctured open books are not considered in the
three criteria. In [22] we studied open books (S, ϕ) with a set of punc-
tures P where ϕ is a diffeomorphism of (S, P, ∂S). We continue the
study of punctured open books in this paper. Since the punctures in
P can be permuted by ϕ, it gives rise to a closed braid in the mani-
fold M(S,ϕ) that can be identified with a transverse link in the contact
manifold (M(S,ϕ), ξ(S,ϕ)). As a consequence, the problem of detecting
overtwisted structure is converted to a problem of detecting loose-links.

It turned out that extending the results for non-punctured open
books to punctured open books is not routine. Even though the notion
of right-veering can naturally be extended to punctured open books,
the extended non-right-veering property does not imply looseness of the
transverse link. To solve this problem, in [22] a notion of non-quasi-
right-veering is introduced for punctured open books. This condition
appears to be a ‘correct’ generalization of non-right-veering as it implies
looseness of the transverse link.
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non-right-veering arc

in S[16]

non-quasi-right-
veering arc
in (S, P ) [22]

twist-left-veering
arc system

in S

twist-left-veering
arc system
in (S, P )

FDTC ≤ 0 (pseudo-Anosov)

FDTC < 0 (periodic)

non-existence of
boundary right P -bigons

in (S, P ) [22]

6

?

equivalent
[16]

6

?

conjectured
[22]

- -

?

- -

? ?

add
punctures

use
many arcs

behavior
near ∂S

use
many arcs

add
puncturesThm 6.5

Prop 6.6

use
many arcs

Figure 1. Criteria for overtwistedness and looseness.

Non-right-veering is equivalent to non-positive fractional Dehn twist
coefficient, which is a numerical invariant of mapping classes [16]. On
the other hand, for non-quasi-right-veering no numerical characteri-
zation has been found. Instead, a boundary right P -bigon, that is a
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certain punctured bigon at the boundary ∂S, plays a practically useful
role to detect quasi-right-veering. In [22] it is conjectured that non-
existence of boundary P-bigon is equivalent to non-quasi-right-veering.

In this paper, we extend the arc criteria in [16, 22] to arc-system
criteria. More precisely, we generalize the notion of non-(quasi)-right-
veering to a notion of twist-left-veering. Our work may be understood
as an analogue of Wand’s generalization of Goodman’s criterion. The
schematic picture in Figure 1 may be helpful.

In [22] we introduced the right-veering ordering ≺right and the strong
right-veering ordering �right of arcs, see Definition 2.2. A mapping
class ϕ ∈ MCG(S, P ) is called non-right-veering (resp. non-quasi-
right-veering) if ϕ(γ) ≺right γ (resp. ϕ(γ) �right γ) for some arc γ.
Both orderings ≺right and �right can be naturally extended to N -arc
systems.

Let N ∈ N. If an N -arc system Γ and its image ϕ(Γ) form a 2N -gon
then we call it a boundary based region, denoted R(Γ, ϕ(Γ)) (see Defi-
nition 3.5 and Figure 7). If a 2N -gon is formed then we define another
N -arc system ϕtw(Γ) called the left-twist of Γ by ϕ(Γ) (Definition 3.7).
We have ϕtw(Γ) ≺right Γ ≺right ϕ(Γ) in general. If no 2N -gon is formed
we define ϕtw(Γ) := ϕ(Γ). We say that ϕ is (N, k)-twist left-veering
if ϕtw(Γ) �right Γ for some N -arc system Γ such that the boundary
based region R(Γ, ϕ(Γ)) contains k puncture points. We also say that
ϕ is N -twist left-veering (resp. twist left-veering) if ϕ is (N, k)-twist
left-veering for some k (resp. N and k).

When P = ∅, 1-twist left-veering and non-right-veering are equiva-
lent. When P 6= ∅, (1, 0)-twist left-veering and non-quasi-right-veering
are equivalent. Thus, twist left-veering is a generalization of non-right-
veering and non-quasi-right-veering. Although someone might want to
name it non-twist right-veering, we prefer twist left-veering to avoid the
prefix ‘non-’, and in fact, when ϕtw(Γ) �right Γ the arc system ϕtw(Γ)
is on the left of Γ near the base points.

A contact 3-manifold (M(S,ϕ), ξ(S,ϕ)) is overtwisted if ϕ is non-right-
veering [16]. Similarly, we showed that a transverse link represented by
a braid L is loose (the complement is overtwisted) if the distinguished
monodromy ϕL ∈ MCG(S, P ) is non-quasi-right-veering [22]. We gen-
eralize these results to twist left-veering.

Theorem 4.1. Let L be a closed braid with respect to (S, ϕ) and ϕL ∈
MCG(S, P ) be its distinguished monodromy.
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(1) If ϕ ∈ MCG(S) is N-twist left-veering then (M(S,ϕ), ξ(S,ϕ)) is
overtwisted and there is an overtwisted disk that intersects the
binding at N points.

(2) If ϕL ∈ MCG(S, P ) is (N, k)-twist left-veering then there is
an overtwisted disk that intersects the binding at N points and
intersects the closed braid L at k points. In particular, if ϕL is
(N, 0)-twist left-veering then L is loose.

Recall a result of Wand [30] that if (S, ϕ) admits an overtwisted re-
gion then (S, ϕ) supports an overtwisted contact structure. The state-
ment (1) in Theorem 4.1 suggests that the two conditions on (S, ϕ) (i)
admitting an overtwisted region and (ii) twist left veering are compa-
rable when the puncture set P is empty. However, when P 6= ∅ Wand’s
proof of the result may not immediately be generalized as we discuss
in Remark 6.3.

For a transverse link T in an overtwisted contact 3-manifold (M, ξ),
the depth of T , depth(T ;M), is the minimum number of intersection
of an overtwisted disk in M and T . It was introduced by Baker and
Onaran [1] and measures non-looseness of T . As an application of
Theorem 4.1 we give a diagrammatic interpretation of the depth in
Corollary 5.3. In particular, we obtain the characterization of depth 1
and depth 2:

Proposition 5.7 and Theorem 5.8. Suppose that ξ(S,ϕ) is over-
twisted. Let L be a closed braid in M(S,ϕ) and B(S,ϕ) be the binding.

• depth(B(S,ϕ);M(S,ϕ)) = 1 if and only if ϕ is non-right-veering
(i.e. 1-twist left-veering).

• depth(B(S,ϕ);M(S,ϕ)) = 2 if and only if ϕ is right-veering and
2-twist left-veering.

• depth(L ∪ B(S,ϕ);M(S,ϕ)) = depth(B(S,ϕ);M(S,ϕ) \ L) = 1 if and
only if ϕL is non-quasi-right-veering (i.e., (1, 0)-twist left-veering).

• depth(B(S,ϕ);M(S,ϕ) \ L) = 2 if and only if ϕL is quasi-right-
veering and (2, 0)-twist left-veering.

Our boundary based region and Wand’s overtwisted region (Defi-
nition 6.1) share some common properties as shown in Figure 18. In
Example 6.4 and Example 8.1 we highlight their difference. The follow-
ing theorem shows an overtwisted region is a special type of boundary
based region.

Theorem 6.5. Let Γ be an N-arc system with N ≥ 2 such that the
boundary based region R(Γ, ϕ(Γ)) exists. Then R(Γ, ϕ(Γ)) is an over-
twisted region if and only if ϕtw(Γ) �right Γ, int(ϕ

tw(Γ)) ∩ int(Γ) = ∅,
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and R(Γ, ϕ(Γ)) is embedded. (A parallel statement holds for N = 1,
see Proposition 6.6.)

In the following corollary, the if-direction (⇐) is exactly Theorem 4.1,
and the only-if-direction (⇒) follows from Theorem 6.5, Proposition 6.6
and Wand’s significant result, the inconsistency criterion [30, Theorem
1.1].

Corollary 6.9. An open book (S, ϕ) supports an overtwisted contact
structure if and only if (S, ϕ) is twist left-veering after some stabiliza-
tions. (In other words, (S, ϕ) is twist left veering after some stabiliza-
tions if and only if (S, ϕ) is inconsistent.)

In Corollary 6.9 destabilizations are not required thanks to [30, The-
orem 1.1]. This makes a sharp contrast to the non-right-veering crite-
rion of Honda, Kazez and Matić, which states that an open book (S, ϕ)
is overtwisted if and only if it is stably equivalent to some non-right-
veering open book (S ′, ϕ′). That is, (S, ϕ) and (S ′, ϕ′) are related to
each other by a sequence of stabilizations and destabilizations. (Every
open book becomes right-veering after a number of stabilizations [16,
Proposition 6.1]).

Corollary 6.9 leads us to the following question:

Question 1.1. Is it true that an open book (S, ϕ) supports an over-
twisted contact structure if and only if (S, ϕ) is twist left-veering (with-
out stabilizations)?

If the answer is “Yes” then it would imply the contrapositive of the
following conjecture that is a new tightness criterion. The point of the
criterion is that it does not require stabilizations or destabilizations.
It is a very straightforward condition comparing to the consistency
condition.

Conjecture 1.2. If the FDTC of ϕ is grater than 1 for every boundary
component then (S, ϕ) supports a tight contact structure.

This conjecture is solved when S has genus 0 [20] and sketched in
[31] for general case.

Theorem 4.1 has more application to contact cyclic branched covers.
So far, we have been requiring arc systems end at ∂S. If we allow arc
systems end at ∂S ∪ P instead, then we can define a similar ordering
that we denote by �∂+P

right . It turned out that ϕtw
L (Γ) �∂+P

right Γ is a
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weaker condition than ϕtw
L (Γ) �right Γ. Using this weaker ordering

�∂+P
right in the place of �right, we define a notion of weakly (N, k)-twist

left-veering. We show that weakly (N, 0)-twist left-veering guarantees
virtually looseness of the closed braid L as stated in Theorem 7.8.

Theorem 7.8. Assume that all the meridians of L are homotopically
non-trivial. If ϕL is weakly (N, 0)-twist left-veering; namely, there is
an N-arc system Γ ∈ AB(S, P ) such that ϕtw

L (Γ) �∂+P
right Γ and the

associated boundary based region R(Γ, ϕ(Γ)) is non-punctured, then L
is virtually loose.

Figure 2 below would help us to understand four results on looseness
and virtually looseness.

single arc γ arc system Γ

[22, Theorem 4.1] Theorem 4.1

ϕL(γ) �right γ ϕtw
L (Γ) �right Γ with non-punctured R(Γ, ϕL(Γ))

(non-quasi-rightveering) ((N, 0)-twist left-veering)

⇒ L is loose ⇒ L is loose

[23, Corollary 5.7] Theorem 7.8

ϕL(γ) ≺right γ ϕtw
L (Γ) �∂+P

right Γ with non-punctured R(Γ, ϕL(Γ))

(non-rightveering) (weakly (N, 0)-twist left-veerting)

⇒ L is virtually loose ⇒ L is virtually loose

Figure 2. Four results on looseness and virtually loose-
ness of transverse links

In Figure 3 below definitions of various left-veering type notions are
summarized.

The paper is organized as follows. In Section 2 we recall basic def-
initions including the two orderings ≺right and �right of arcs in S and
non-quasi-right-veering monodromies. In Section 3 we extend the def-
inition of the two orderings to N -arc systems. We further define a
boundary based region R(Γ,Γ′), left twist ϕtw(Γ) of Γ and the notion
of (N, k)-twist left-veering. In Section 4 we prove the main result The-
orem 4.1. In Section 5 we discuss applications of Theorem 4.1 to the
depths of transverse links. In Section 6, relation between twist left veer-
ing and inconsistency is discussed. In Section 7 we introduce �∂+P

right and



8 TETSUYA ITO AND KEIKO KAWAMURO

Notion Definition Property
∃ arc γ s.t.

Non-right-veering ϕ(γ) ≺right γ (P = ∅) Overtwisted
ϕL(γ) ≺right γ (P 6= ∅) Virtually loose

∃ arc γ s.t.
Non-quasi-right-veering ϕL(γ) �right γ Loose

∃ N -arc system Γ s.t.
N -twist-left-veering ϕtw(Γ) �right Γ Overtwisted

∃ N -arc system Γ s.t.
(N, 0)-twist-left-veering ϕtw

L (Γ) �right Γ, Loose
R(Γ, ϕL(Γ)) contains no punctures

Weakly ∃ N -arc system Γ s.t.

(N, 0)-twist-left-veering ϕtw
L (Γ) �∂+P

right Γ, Virtually loose

R(Γ, ϕL(Γ)) contains no punctures

Figure 3. Summary of definitions of various left-
veering notions and relation to overtwisted and loose
properties.

prove Theorem 7.8. In Section 8 we give examples of twist left veering
monodromy and weakly twist left veering monodromy.
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2. Preliminaries

2.1. Open books and closed braids. We review the relation be-
tween open books and contact 3-manifolds, and the relation between
closed braids and transverse links.

Let S be an oriented compact surface with non-empty boundary
and P = {p1, . . . , pn} be a (possibly empty) set of n distinct interior
points of S. The mapping class group MCG(S, P ) is the group of
isotopy classes of orientation preserving diffeomorphisms of the sur-
face S fixing ∂S pointwise and fixing P setwise. In the following,
MCG(S) = MCG(S, ∅).
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An (abstract) open book is a pair (S, ϕ) of a surface S and a dif-
feomorphism ϕ ∈ Diff+(S, ∂S) (or a mapping class ϕ ∈ MCG(S)).
Throughout, for simplicity a diffeomorphism and its mapping class are
denoted by the same symbol if no confusions occur.

For an open book (S, ϕ) let M(S,ϕ) be a closed 3-manifold defined by

(2.1) M(S,ϕ) := S × [0, 1]/ ∼

where∼ is the equivalence relation defined by (x, 1) ∼ (ϕ(x), 0) for all x ∈
S, (x, t) ∼ (x, s) for all x ∈ ∂S and t, s ∈ [0, 1]. We denote the quo-
tient map by Π : S × [0, 1] →M(S,ϕ) = S × [0, 1]/ ∼. The binding B is
defined by

B = B(S,ϕ) := Π(∂S × {t}) ⊂M(S,ϕ)

which does not depend on t ∈ [0, 1] since ϕ is identity near ∂S. The
binding B is a fibered link in M(S,ϕ) with natural fibration:

π = π(S,ϕ) : M(S,ϕ) \B(S,ϕ) −→ S1 = [0, 1]/0 ∼ 1

∈ ∈

Π(x, t) 7−→ t

For each t ∈ [0, 1] the closure of the fiber St := π−1(t) is called a page
of the open book. Note that S0 and S1 represent the same page in
M(S,ϕ).

For t ∈ (0, 1) let

(2.2) pt = Π−1|St : St → S × {t} = S

be the canonical diffeomorphism arising from the definition (2.1). To
define p0 : S0 → S, for x ∈ S0 we choose a sequence of points {xn ∈
Stn ⊂M(S,ϕ) | 0 < tn+1 < tn} that converges to x, and define

(2.3) p0(x) = lim
n→∞

ptn(xn)

(this is well-defined and independent of a choice of {xn}). The diffeo-
morphism p1 : S1 → S is defined similarly. Thus, p0(x) = ϕ ◦ p1(x) if
x ∈ S0 = S1 ⊂M(S,ϕ).

A contact structure ξ = ker α on M(S,ϕ) is supported by the open
book (B(S,ϕ), π) if dα > 0 on every page St and α > 0 on B(S,ϕ).
Up to isotopy there exists a unique contact structure ξ(S,ϕ) on M(S,ϕ)

supported by (B(S,ϕ), π) [11]. If (M, ξ) and (M(S,ϕ), ξ(S,ϕ)) are contacto-
morphic then we say that (M, ξ) is supported by the open book (S, ϕ)
or, (S, ϕ) is an open book of (M, ξ).

A link L in M(S,ϕ) is a closed braid with respect to (S, ϕ) if L ⊂
M(S,ϕ) \B(S,ϕ) and L is positively transverse to every page. For a fixed
(S, ϕ) two closed braids L0 and L1 are called braid isotopic if they are
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isotopic through a continuous family {Lt}0≤t≤1 of closed braids with
respect to (S, ϕ).

Suppose that (M, ξ) is supported by (S, ϕ). We say that a transverse
link T in (M, ξ) is represented by a closed braid L with respect to
(S, ϕ) if a contactomorphism (M(S,ϕ), ξ(S,ϕ)) → (M, ξ) takes L to T
(up to transverse isotopy). In fact, due to Bennequin [2] and Pavelescu
[27, 28], given a contact manifold (M, ξ) and its open book (S, ϕ), every
transverse link T in (M, ξ) is represented by some closed braid L with
respect to (S, ϕ) and such L is unique up to braid isotopy, positive
braid stabilization and positive braid destabilization.

Let L ⊂ M(S,ϕ) be a closed braid with respect to (S, ϕ). Take a
collar neighborhood ν(∂S) so that ϕ|ν(∂S) = idν(∂S), and move L by
braid isotopy so that P := p0(L ∩ S0) ⊂ ν(∂S). Then ϕ is regarded
as a diffeomorphism (S, P ) → (S, P ) hence it gives an element j(ϕ) ∈
MCG(S, P ). By cutting M(S,ϕ) along the page S0 we get a cylinder
S × [0, 1] and L gives rise to an element βL of the surface braid group
Bn(S). We define the the distinguished monodromy of L by

ϕL = j(ϕ) i(βL)

where i is the push map in the generalized Birman exact sequence [8,
Theorem 9.1]

1 → Bn(S)
i→ MCG(S, P )

f→ MCG(S) → 1.

The distinguished monodromy ϕL is well-defined up to point-changing
isomorphism [22]: If two closed braids L and L′ with respect to (S, ϕ)
are braid isotopic, then there is a point-changing isomorphism Θ :
MCG(S, P ) → MCG(S, P ′) where P = p0(S0 ∩ L), P ′ = p0(S0 ∩ L′)
such that Θ(ϕL) = ϕL′ . Here the point-changing isomorphism Θ is an
isomorphism defined by Θ([ψ]) = [θ−1 ◦ ψ ◦ θ] for some orientation-
preserving diffeomorphism θ : (S, P ′) → (S, P ) such that θ|∂S = id∂S
and θ is isotopic to idS if we forget the sets of marked points P and
P ′. When P = P ′, this simply means that ϕL and ϕL′ are conjugate in
MCG(S, P ).

2.2. Strong right-veering ordering and quasi-right-veering. We
review the right-veering orderings ≺right and �right of arcs and the def-
inition of quasi-right-veering.

Take a base point v ∈ ∂S. Let Av(S, P ) be the set of isotopy classes
of oriented properly embedded arcs γ : [0, 1] → S\P satisfying γ(0) = v
and γ(1) ∈ ∂S \ {v}. We call γ(0) the base point of γ and γ(1) the
terminal point of γ. We allow arcs to be boundary-parallel and by an
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isotopy we mean isotopy fixing ∂S. Let γ denote the arc γ with the
reversed orientation so that γ(t) = γ(1− t).

We call an element of Av(S, P ) an arc based on v. Abusing the
notation, by an arc γ ∈ Av(S, P ) we will mean three different objects.

• A map γ : [0, 1] → S \ P ,
• The image of the map (viewed as a submanifold) γ([0, 1]) ⊂
S \ P .

• The isotopy class of the submanifold γ.

We say that arcs α and β intersect efficiently if they realize the geo-
metric intersection number. Unless otherwise specified (such as Defini-
tions 3.9 and 6.1), we will always assume that all arcs intersect pairwise
efficiently. In particular, when α and β have the same isotopy class rel-
ative to the boundary we have int(α) ∩ int(β) = ∅.

The following orderings are important in 3-dimensional contact topol-
ogy.

Definition 2.1 (Right-veering ordering ≺right). For arcs α, β ∈ Av(S, P ),
we denote α ≺right β if α 6= β and the arc β lies on the right side of α
in a small neighborhood of the base point v.

Definition 2.2 (Strong right-veering ordering �right [22]). For arcs
α, α′ ∈ Av(S, P ), we denote α ≺disj α

′ if α ≺right α
′ and α ∩ α′ = {v}.

We denote α �right α
′ if α 6= α′ and there exists a sequence of arcs

α0, . . . , αn ∈ Av(S, P ) such that

(2.4) α = α0 ≺disj α1 ≺disj · · · ≺disj αn = α′.

The relation ≺right is a strict total order and �right is a strict partial
order (strict in the sense that it is irreflexive; a 6≺right a for all a). The
relation ≺disj is not a strict partial order since it is not transitive;
a ≺disj b and b ≺disj c 6⇒ a ≺disj c.

Remark 2.3. The definitions of �right in Definition 2.2 and [22] are
slightly different. In this paper for the sequence of arcs (2.4) we required
αi ∩αi+1 = {v} (so αi and αi+1 only shares the common base point v),
whereas in [22] we required a weaker condition int(αi) ∩ int(αi+1) = ∅
(so we allowed αi and αi+1 have the same start point and ternimal
point).

However, as for the definition of quasi-right-veering, Definition 2.7
below and the one given in [22] are equivalent. This is because when α
and β share the same terminal point, we can slightly move one of the
terminal points without introducing new intersections.

Remark 2.4. When P = ∅ the orderings ≺right and �right are the
same, which can be proved using a work of Honda, Kazez and Matić
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[16, Lemma 4.1]. However, when P 6= ∅, ≺right and �right are different
as studied in [22].

The mapping class group MCG(S, P ) acts on Av(S, P ) and the ac-
tion preserves both ≺right and �right. Using the total ordering ≺right

the right-veering property is defined as follows.

Definition 2.5 (Right-veering [16]). An element ϕ ∈ MCG(S, P ) is
right-veering if for any v ∈ ∂S and any arc α ∈ Av(S, P ), α �right ϕ(α);
that is, α ≺right ϕ(α) or α = ϕ(α).

For our purpose, however, it is much more convenient to accept non-
right-veering as the basic concept. We view right-veering as not non-
right-veering. Definition 2.5 is rephrased as follows:

Definition 2.6 (Non-right-veering). An element ϕ ∈ MCG(S, P ) is
non-right-veering if there exists v ∈ ∂S and an arc α ∈ Av(S, P ) such
that ϕ(α) ≺right α. Otherwise, we say that ϕ is right-veering.

Using the strong right-veering ordering �right in the place of ≺right,
we define quasi-right-veering.

Definition 2.7 (Non-quasi-right-veering [22]). An element ϕ ∈ MCG(S, P )
is non-quasi-right-veering if there exists v ∈ ∂S and an arc α ∈ Av(S, P )
such that ϕ(α) �right α. Otherwise, we say that ϕ is quasi-right-veering.

Since �right and ≺right are the same when P = ∅, ϕ ∈ MCG(S)
is right-veering if and only if it is quasi-right-veering. On the other
hand, when P 6= ∅, ϕ is quasi-right-veering if ϕ is right-veering [22,
Proposition 3.14], but the converse is not true in general.

The following is a list of properties of non-quasi-rightveering.

Theorem 2.8. Let (M, ξ) be a closed contact 3-manifold and T be a
transverse link in (M, ξ).

(1) (M, ξ) is overtwisted if and only if there exists a non-right-
veering open book (S, ϕ) that supports (M, ξ). [16]

(2) T is loose; that is, the contact structure restricted to the com-
plement M \ T is overtwisted, if and only if there exist an open
book (S, ϕ) supporting (M, ξ) and a closed braid representative
L of T with respect to (S, ϕ) such that the distinguished mon-
odromy ϕL is non-quasi-right-veering. [22]

(3) If T is represented by a closed braid L with respect to an open
book (S, ϕ) whose distinguished monodromy ϕL is non-right-
veering then T is virtually loose; that is, there is a finite cover-
ing of M \T on which the lifted contact structure is overtwisted.
[23]
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3. Right-veering ordering on arc systems and N-twist
left-veering

3.1. Right-veering ordering on arc systems. In this section we
extend the strong right-veering ordering �right to arc systems.

Definition 3.1 (N -arc system). Let B = {v1, . . . , vN} ⊂ ∂S be an
ordered set of N distinct boundary points. Let

AB(S, P ) =

{
Γ = (γ1, . . . , γN)
∈ Av1(S, P )× · · · × AvN (S, P )

γi ∩ γj = ∅ (i 6= j)

}
.

We call an element of AB(S, P ) an N-arc system of (S, P ) based on B.

We may abuse the symbol Γ for different objects such as:

• A collection of maps {γj : [0, 1] → S | j = 1, . . . N}.
• The submanifold γ1 ∪ γ2 ∪ · · · ∪ γN ⊂ S
• The isotopy class (rel. ∂S) of the submanifold γ1∪γ2∪· · ·∪γN ⊂
S.

We denote Γ(1) := {γ1(1), γ2(1), . . . , γN(1)} = ∂Γ \ B the set of termi-
nal points.

We naturally generalize ≺right and �right of Definitions 2.1 and 2.2
as follows:

Definition 3.2 (Right-veering ordering ≺right). For N -arc systems Γ =
(γ1, . . . , γN) and Γ′ = (γ′1, . . . , γ ′N) ∈ AB(S, P ), we denote Γ ≺right Γ

′

if Γ 6= Γ′ and γj �right γ
′j for all j = 1, . . . , N .

Definition 3.3 (Strong right-veering ordering �right). Let Γ and Γ′ ∈
AB(S, P ).

• We denote Γ ≺disj Γ
′ if Γ ≺right Γ

′ and Γ ∩ Γ′ = B.
• We denote Γ �right Γ′ if Γ 6= Γ′ and there exists a finite
sequence of N -arc systems Γ0, . . . ,Γn ∈ AB(S, P ) such that
Γ = Γ0 ≺disj Γ1 ≺disj · · · ≺disj Γn = Γ′.

While ≺right and �right are strict partial orderings, ≺disj is not.

Example 3.4. See Figure 4. Sketch (i) depicts 1-arc systems α and β
satisfying α �right β. Sketch (ii) shows (α1, α2) ≺disj (γ

1, γ2) ≺disj (β
1, β2);

thus, (α1, α2) �right (β
1, β2). The thick arrows represent parts of the

boundary ∂S with the induced orientation.

Related to Remark 2.4, if N > 1 the orderings ≺right and �right are
not equal as we will see in Proposition 3.6.
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(i) (ii)

α

β

v v1

v2

α1

α2

β1
β2 γ1

γ2

Figure 4. (i) N = 1 and α �right β. (ii) N = 2 and
(α1, α2) �right (β

1, β2).

3.2. N-twist left-veering. In this section we defineN -twist left-veering
as a generalization of non-right-veering.

Definition 3.5 (Boundary based region). Let Γ,Γ′ ∈ AB(S, P ) be N -
arc systems intersecting efficiently and satisfying Γ ≺right Γ

′. Suppose
that there exists an embedded 2N -gon in S with the boundary ∂R ⊂
Γ ∪ Γ′ (see Figures 6, 7) such that:

(i) The interior of R is disjoint from Γ′

(ii) The orientation of ∂R agrees with that of Γ′ and disagrees with
that of Γ.

(iii) The corners of R are read v1, q1, v2, q2, . . . , vN , qN with respect
to the orientation of ∂R where {v1, . . . , vN} = B ⊂ ∂S and
{q1, . . . , qN} ⊂ Γ ∩ Γ′ ∩ int(S).

The 2N -gon is called a boundary based region for the ordered pair (Γ,Γ′)
and denoted by R(Γ,Γ′).

Here are some terminologies we use:

• Corners v1, . . . , vN are called base corners and depicted by black
dots •vj .

• Corners q1, . . . , qN are called non-base corners and depicted by
hollow circles ◦qj

• If int(R(Γ,Γ′)) ∩ Γ = ∅ then we say that R(Γ,Γ′) is embedded.
• If R(Γ,Γ′) contains k (≥ 0) punctures then we say that it has
type (N, k).

Here are some remarks:

• If Γ = (γ1, . . . , γN) and Γ′ = (γ′1, . . . , γ ′N), we have vj =
γj(0) = γ′j(0) and qj = γ′j ∩ γj+1 for j = 1, . . . , N (where
γN+1 = γ1).
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• All the non-base corners qi are negative intersections of Γ and
Γ′.

♦ (Uniqueness Property): Given Γ,Γ′, the boundary based region
may not exist. If it exists R(Γ,Γ′) is unique due to Condition
(i).

• Although Γ′ and int(R(Γ,Γ′)) are disjoint, Γ may intersect int(R(Γ,Γ′)).
• For N = 1, if 1-arc systems Γ = (γ) and Γ′ = (γ′) form a
boundary based region R(γ, γ′) then it is a punctured bigon as
depicted in Figure 5. In [22] such a bigon is called a boundary
right P -bigon from γ to γ′.

Thus, boundary based regions can be viewed as generalization
of boundary right P -bigons. However, since a boundary right
P -bigon may be immersed, it is not always a boundary based
region. In [22, Proposition 3.5], it is shown that a boundary
right P -bigon serves as an obstruction for γ �right γ

′. Similarly,
a boundary based region serves as an obstruction for Γ �right Γ

′.

v1

γ γ′

q1

Figure 5. A boundary based region R(γ, γ′) whereN =
1 and k > 0.

Proposition 3.6. Let N > 1. If N-arc systems Γ and Γ′ form a
boundary based region R(Γ,Γ′) then Γ 6�right Γ

′.

Proof. Assume to the contrary that Γ and Γ′ form a boundary based
region R(Γ,Γ′) and Γ �right Γ′. Then there exists an interpolating
sequence:

Γ = Γ0 ≺disj Γ1 ≺disj · · · ≺disj Γn = Γ′

for some n ≥ 2. Among such ordered pairs (Γ,Γ′) we choose one so
that the length, n, of the interpolating sequence is minimum.

In Figure 6 (ii) the dashed arcs stand for Γ1. Since Γ ≺right Γ1 ≺right

Γ′ there exist M -arc systems ∆1 and ∆′ for some 2 ≤ M ≤ N that
are sub-systems of Γ1 and Γ′ respectively, and form a boundary based
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region R(∆1,∆
′) that is a 2M -gon (the shaded region in Figure 6 (ii)).

Taking subsequent M -arc systems ∆i ⊂ Γi, we obtain a sequence

∆1 ≺disj ∆2 ≺disj · · · ≺disj ∆n = ∆′

of length n− 1, which contradicts the minimality of n. □

: Γ′

: Γ1

: Γ

(i) (ii)

v1 v2

v3v4

q4

q1

q2

q3

R(Γ,Γ′)

Figure 6. Proof of Proposition 3.6.

In the following, we mainly study boundary based regions R(Γ, ϕ(Γ))
for ϕ ∈ MCG(S, P ).

Definition 3.7 (Left twist). Let B = (v1, . . . , vN). For Γ ∈ AB(S, P )
and ϕ ∈ MCG(S, P ) we define ϕtw(Γ) ∈ AB(S, P ) the left-twist of Γ
for ϕ as follows:

• When Γ and ϕ(Γ) do not form a boundary based region, we
define ϕtw(Γ) := ϕ(Γ).

• When Γ and ϕ(Γ) form a boundary based region R(Γ, ϕ(Γ)),
take tj, sj ∈ [0, 1] so that qj = ϕ(γj(tj)) = γj+1(sj). We define
an arc

ϕtw(γj) := γj|[0,sj−1] ∗ (ϕ ◦ γj−1)|[tj−1,1]

that starts at vj and goes along γj until reaching qj−1 then
turns left and switches to ϕ(γj−1) to the terminal point, where
γ0 = γN . The symbol ∗ represents concatenation of paths. See
Figure 7. We define

ϕtw(Γ) := (ϕtw(γ1), . . . , ϕtw(γN)).

When N = 1 see Figure 10-(4), where γ1 = γ0 = γ.

Using the left-twist ϕtw(Γ) we define (N, k)-twist left-veering.

Definition 3.8 ((N, k)-twist left-veering). An element ϕ ∈ MCG(S, P )
is (N, k)-twist left-veering if there exist a set B of N base points and
an N -arc system Γ ∈ AB(S, P ) such that
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v1 v2

v3

q1

q2q3

: ϕ(Γ)

: ϕtw(Γ)

: ΓR(Γ, ϕ(Γ))ϕtw(γ1) γ1

ϕ(γ1)

ϕtw(γ2)

γ2
ϕ(γ2)

ϕtw(γ3)

γ3

ϕ(γ3)

Γ

Figure 7. The boundary based region R(Γ, ϕ(Γ)) and
the left twist ϕtw(Γ).

• Γ and ϕ(Γ) form a boundary based region R(Γ, ϕ(Γ)) of type
(N, k), and

• ϕtw(Γ) �right Γ.

We also say that ϕ is N-twist left-veering if ϕ is (N, k)-twist left-veering
for some k.

Finally, we introduce a type (1, 0) boundary based region whose
treatment is exceptional. By doing so, we can regard the (N, k)-twist
left-veering as a generalization of non-right-veering, and we can state
our main result Theorem 4.1 in a unified way.

Definition 3.9 (Boundary based region of type (1, 0)). Let Γ = (γ)
and Γ′ = (γ′) ∈ Av(S, P ) be 1-arc systems with γ′ ≺right γ. Since the
condition Γ ≺right Γ

′ is not satisfied, the ordered pair (Γ,Γ′) does not
form a boundary based region in the sense of Definition 3.5.

If we slightly move the arcs γ and γ′ near the base point v we can
create a bigon R with no punctures. See Figure 8. After the operation,
γ and γ′ no longer intersect efficiently. However all the conditions (i)–
(iii) in Definition 3.5 are satisfied. Thus, we may call the bigon R a
boundary based region of type (1, 0) formed by the ordered pair (Γ,Γ′)
of 1-arc systems with Γ′ ≺right Γ.

With this definition, we observe that Definition 3.8 of (N, k)-twist
left-veering can be extended to (N, k) = (1, 0).

Remark 3.10. We have the following:

• ϕ ∈ MCG(S) is non-right-veering if and only if ϕ is 1-twist
left-veering.



18 TETSUYA ITO AND KEIKO KAWAMURO

v v

γγ′

γ γ′

R

Figure 8. A boundary based region R of type (1, 0).

• ϕ ∈ MCG(S, P ) is non-quasi-right-veering if and only if ϕ is
(1, 0)-twist left-veering.

Thus, one can view (N, k)-twist left-veering as a generalization of non-
right-veering.

4. Overtwisted disks and twist left-veering monodromies

This section is devoted to prove Theorem 4.1.

Theorem 4.1. Let L be a closed braid with respect to (S, ϕ) and ϕL ∈
MCG(S, P ) be its distinguished monodromy.

(1) If ϕ ∈ MCG(S) is N-twist left-veering then (M(S,ϕ), ξ(S,ϕ)) is
overtwisted, and there is an overtwisted disk D that intersects
the binding B at N points.

(2) If ϕL ∈ MCG(S, P ) is (N, k)-twist left-veering then there is
an overtwisted disk D that intersects the binding B at N points
and intersects the closed braid L at k points. In particular, if
ϕL is (N, 0)-twist left-veering then L is loose.

For the proof, we use open book foliations introduced by the authors
in [17] and we will assume the readers are familiar with the definition
and basic properties of open book foliations. See the research mono-
graph [24] by LaFountain and Menasco for a gentle introduction to
the techniques of open book foliations that is central to the new work
in this paper. Open book foliations had their origins in the work of
Birman and Menasco in a series of papers about braid foliations. See
Birman and Finkelstein’s article [3] for a useful guide to the work of
Birman and Menasco on braid foliations, and [4] for their key paper
that is relevant for us. It is the first place where braid foliations were
used to solve a major then-open problem in contact topology.
In the proof, we will construct a transverse overtwisted disk D [17,

Definition 4.1] which can be thought as an embedded disk D in (M(S,ϕ), ξ(S,ϕ))
whose boundary ∂D is a closed braid with respect to the open book
(S, ϕ) (i.e., a transverse unknot) with sl(∂D) = 1. Note that the
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Bennequin inequality is violated. Hence the existence of a transverse
overtwisted disk is equivalent to overtwistedness of ξ. An overtwsited
disk D can be obtained by a suitable perturbation of the transverse
overtwisted disk D.

Convention 4.2. For simplicity, both a b-arc γ ⊂ St of the open book
foliation of D and its image pt(γ) ⊂ S under the canonical diffeomor-
phism pt : St → S (defined in Section 2.1) are denoted by the same
letter γ. This convention also applies in the proof of Theorem 5.8.

Proof. We prove (2) since (1) is a special case of (2) where P = ∅ and
the closed braid L is empty. Assume that ϕL ∈ MCG(S, P ) is (N, k)-
twist left-veering. Construction of a transverse overtwisted disk will be
described in the following three cases.

Case (N, k) = (1, 0).

Remark 3.10 states that ϕL is non-quasi-right-veering. Theorem 4.1
in [22] shows not only L is loose but also how to construct an over-
twisted disk that intersects the binding at one point.

Case N = 1 and k > 0.

Although the construction of transverse overtwisted disk is exactly
the same as in the proof of [22, Theorem 4.1], since the construction is
fundamental for the case N ≥ 2, we include it here.

(Step 1: Setting up arcs and points)

By the assumption that ϕL ∈ MCG(S, P ) is (1, k)-twist left-veering,
there is an arc γ such that γ and ϕL(γ) form a boundary based region
(bigon) R(γ, ϕL(γ)) with k punctures and ϕtw

L (γ) �right γ. Take an
interpolating sequence

ϕtw
L (γ) = γ0 ≺disj γ1 ≺disj · · · ≺disj γn−1 ≺disj γn = γ.

Let v denote the common base point of γ0, . . . , γn and wi the termi-
nal point of the arc γi where i = 0, . . . , n. Since γ0 and γn have the
same terminal point, w0 = wn. In the open book foliation Fob(D), v
corresponds to a negative elliptic point and w0, . . . , wn−1 correspond to
positive elliptic points.

Let αi ⊂ S be a simple arc segment emanating from wi (i = 0, . . . , n−
1) and contained in a small neighborhood of wi so that αis are pairwise
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disjoint.

(Step 2: Construction of a once-holed disk)

We construct viamovie presentation a once-holed disk that is disjoint
from the closed braid L. Let 0 = t0 < t1 < · · · < tn = 1. We will
construct a family

{b(t) ⊂ St | t ∈ [0, 1]}
of b-arcs emanating from v and n families

{a0(t) ⊂ St | t ∈ [t1, tn]},
{ai(t) ⊂ St | t ∈ [0, 1] \ [ti, ti+1]} where i = 1, . . . , n− 1

of a-arcs ai(t) emanating from the elliptic point wi. The families will
be building blocks of the once-holed disk.

For t ∈ [0, t1), using Convention 4.2, we define a b-arc b(t) := γ0 =
ϕtw
L (γ) and an a-arc ai(t) := αi where i = 1, . . . , n− 1.
At t = t1 the b-arc b(t) and the a-arc a1(t) intersect tangentially and

form a hyperbolic point.
Figure 9 (iii) gives a movie presentation near t = t1. Take a small

ε > 0. On the page St1−ε we put a describing arc for the hyperbolic
point (dotted arc joining b(t) and a1(t)). The describing arc is chosen
to be very close to γ1 so that after passing t = t1 the isotopy type (in
S) of the b-arc switches from γ0 to γ1, the a-arc a1(t) disappears and
a new a-arc a0(t) emanating from w0 appears. There is no change for
the other a-arcs a2(t), . . . , an−1(t).

Since γ0 ≺disj γ1, the positive normals (dashed arrows in Figure 9
(iii)) are pointing out of the describing arc, which implies that the sign
of the hyperbolic point is positive. In [20, Observation 2.5] one can see
how the sign of hyperbolic point is determined by describing arc and
positive normals.

Figure 9 (i) and (ii) depict part of the open book foliation Fob(D) of
the disk D intersecting with the pages St for t ∈ [0, t1+ ε]. (The a-arcs
a2(t), . . . , an−1(t) are not illustrated.)

For t ∈ (t1, t2), we set b(t) := γ1 and ai(t) := αi where i = 0, 2, 3, . . . , n−
1.

At t = t2, . . . , tn we apply the same construction as t = t1. In order
to create a hyperbolic point at t = ti we put a describing arc of the
hyperbolic point that is very close to γi on the page Sti−ε. At t = ti
the isotopy type (in S) of the b-arc b(t) switches from γi−1 to γi, the
a-arc ai(t) disappears and instead a new a-arc ai−1(t) appears.
To summerise,
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(i) (ii)

(iii)

a1(0)

a0(t1 + ε)
b(0) b(t1 + ε)

D ∩ {St | 0 ≤ t ≤ t1 − ε}

vw0

w1

D ∩ {St | t1 − ε ≤ t ≤ t1 + ε}

t = t1 − ε v

w0 w1

a1(t)b(t)
(= γ0)

t = t1

t = t1 + ε

b(t)(= γ1)
a0(t)

Figure 9. Construction of a transverse overtwisted disk
D.
(i) The open book foliation on D ∩ {St | 0 ≤ t ≤ t1 − ε}
(ii) The open book foliation on D∩{St|t1−ε ≤ t ≤ t1+ε}
(shaded region)
(iii) Forming a hyperbolic point at t = t1. Isotopy type
in S of the b-arc changes from γ0 to γ1.

• at t ∈ [0, t1), the page St contains the b-arc b(t) = γ0 = ϕtw
L (γ)

and the a-arcs a1(t), . . . , an−1(t),
• at t ∈ (ti, ti+1) where i = 1, . . . , n−1, the page St contains the b-
arc b(t) = γi and the a-arcs a0(t), . . . , ai−1(t), ai+1(t), . . . , an−1(t),

• at t ∈ (tn, 1] the page St contains the b-arc b(t) = γn = γ and
a-arcs a1(t), . . . , an−1(t).

Since the a-arcs are very close to the boundary of the page and the
monodromy ϕL restricted to a neighborhood of the boundary ∂S is
identity, in the open book manifold M(S,ϕ) the a-arcs ai(1) = αi and
ai(0) = αi can be identified via the monodromy ϕL for i = 1, . . . , n−1.
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However, the b-arcs b(1) = γ and b(0) = ϕtw
L (γ) cannot be identified

by the monodromy ϕL. This is because ϕL(γ) 6= ϕtw
L (γ) in AB(S, P )

due to the k(> 0) punctures in the bigon R(γ, ϕL(γ)). Therefore, we
obtain a once-holed disk (Figure 10 (1)).

** *

** * *
*

**

*
*

(1)

v

w1

w2

wn−1

w0

ϕtw
L (γ)

γ

γ1
γ2

γn−1

(2)

v

w1

w2

wn−1

w0

ϕtw
L (γ)

ϕL(γ)

γ

(3)

v

w1

w2

wn−1

w0

(4)

ϕL(γ)ϕtw
L (γ)

γ
λ

κ0κ1

R

v v

v′
b(t)

Figure 10. Construction of a transverse overtwisted
disk for N = 1 and k > 0.

(Step 3: Filling the hole)

To fill in the hole of the disk constructed in Step 2, we modify the
family of b-arcs b(t) for 0 ≤ t ≤ t1 − ε. See Figure 10-(4). Let λ :=
ϕL(γ) ∩ ϕtw

L (γ) and v′ := γ ∩ ϕL(γ) ∩ int(S). Let {κs ⊂ R | s ∈ [0, 1]}
be a smooth family of arcs in the bigon R = R(γ, ϕL(γ)) connecting
the vertices v and v′ such that

(1) κ0 = ϕL(γ) ∩ ∂R,
(2) κ1 = γ ∩ ϕtw

L (γ),
(3) int(κt) ∩ int(κt′) = ∅ for t 6= t′,
(4) ∪t1−ε

t=0 κt = R (the family gives a foliation on R),
(5) there are k arcs in the family {κs | s ∈ [0, 1]} that contain a

puncture of R.
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For 0 ≤ t ≤ t1 − ε we re-define the b-arcs as;

b(t) := κ t
t1−ε

∗ λ

so that b(0) = ϕL(γ) and b(t1 − ε) = ϕtw
L (γ). Figure 10-(2) depicts

the open book foliation of the once-holed disk with k punctures with
the modified b-arc family. The darkgray bigon stands for the modified
family {b(t) | 0 ≤ t ≤ t1−ε}. By the condition (5), the darkgray bigon
is punctured k times, where the braid L transversely intersects.

Now using the monodromy ϕL we can successfully identify the b-
arcs b(0) = ϕL(γ) in S0 and b(1) = γ in S1 and obtain a disk D with k
punctures, see Figure 10-(3).

Since the boundary ∂D of the disk D is the trace of the terminal
points of the a-arcs, ∂D transversely intersects the pages of the open
book (S, ϕL). That is, ∂D is a transverse unknot in the contact struc-
ture ξ(S,ϕL). The open book foliation Fob(D) of D contains

• e+(D) = n positive elliptic points (from Steps 1 and 2),
• h+(D) = n positive hyperbolic points (from Step 2),
• e−(D) = N = 1 negative elliptic point (from Steps 1 and 2),
• h−(D) = 0 negative hyperbolic point.

Since the self-linking number satisfies

sl(∂D) = −(e+(D)− h+(D)) + (e−(D)− h−(D)) = 1

(cf [9, p.203]) we conclude that D is a transverse overtwisted disk.

(Step 4: Modifying D into D)

In the proof of [21, Theorem 3], we have shown that there exists
a disk D′ that is C0-close to D and containing an overtwisted disk
D ⊂ D′ such that

(1) |B ∩+ (D′ \ D)| = |B ∩+ D′| = |B ∩+ D| = e+(D),
(2) |B ∩+ D| = 0,
(3) |B ∩− D| = |B ∩− D′| = |B ∩− D| = e−(D),
(4) |L ∩ D| = |L ∩D′| = |L ∩D| = k.

All the above intersections are transverse type, and |X∩±Y | stands for
the number of positive (resp. negative) intersection points of X and
Y .
In the construction of D we note that the structural stability theorem

[17, Theorem 2.21] and the Giroux elimination lemma [10, Lemma 3.3]
play important roles. The equations (2), (3) and (4) show that D is a
desired overtwisted disk.
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Case N ≥ 2.

(Step 1: Setting up arcs and points)

Since ϕtw
L (Γ) �right Γ we have an interpolating sequence of N -arc

systems ∈ AB(S, P ) for some n:

ϕtw
L (Γ) = Γ0 ≺disj Γ1 ≺disj · · · ≺disj Γn = Γ.

Since ϕtw
L (Γ) and Γ have exactly the same set of terminal points, ϕtw

L (Γ)∩
Γ 6= B (as sets); thus ϕtw

L (Γ) 6≺disj Γ which implies n ≥ 2. Denote
Γi = (γ1i , . . . , γ

N
i ) for i = 0, . . . , n. If i = n we may also denote

Γ = (γ1, . . . , γN) so γj = γjn.
For i = 0, . . . , n and j = 1, . . . , N , let wj

i := γji (1) be the terminal

point of γji , the j-th component of the i-th interpolating arc system Γi

and vj := γji (0) the base point of γji . Thus, B = (v1, . . . , vN). When

γji = γj+1
i we slightly move the arc γji by shifting its terminal point

wj
i so that wj

i 6= wj+1
i and γji ≺disj γ

j+1
i holds. This modification can

be done without introducing new intersections (see Figure 11). Thus,
points wj

i are pairwise distinct, except for wj−1
n = wj

0 which is due to
the definition of left-twist ϕtw

L and

wj−1
n = γj−1

n (1) = [ϕL(γ
j−1
n )](1) = [ϕtw

L (γjn)](1) = γj0(1) = wj
0.

ϕL(γ
j)

ϕtw
L (γj)
∥
γj0 vj

wj−1
n =wj

0

wj
1

γj1

wj
i

γji

wi+1
j

γji+1

wj
n−1

γjn−1

γjn=γj

wj
n = wj+1

0

Figure 11. Interpolating sequence of arcs
γj0 ≺disj γ

j
1 ≺disj . . . ≺disj γ

j
n and their distinct ter-

minal points wj−1
n = wj

0, w
j
1, . . . , w

j
n−1, w

j
n = wj+1

0 .

Let αj
i ⊂ S (i = 0, . . . , n − 1 and j = 1, . . . , N) be a simple arc

segment emanating from wj
i and contained in a small neighborhood of

wj
i so that αj

i s are pairwise disjoint.
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(Step 2: Construction of a once-holed disk)

Let 0 = t0 < t1 < · · · < tn−1 < tn < 1. We set i = 0, . . . , n and j =
1, . . . , N . We will construct a family

{
b(t) = (b1(t), . . . , bN(t)) ⊂ St

∣∣ t ∈ [0, 1]
}

of N -tuples of b-arcs emanating from B = (v1, . . . , vN). With Conven-
tion 4.2, we may regard b(t) as an N -arc system ∈ AB(S, P ). We also
construct families of a-arcs

{
aji (t) ⊂ St

∣∣ t ∈ [0, 1]
}
emanating from the

elliptic point wj
i where i = 0, . . . , n − 1 and j = 1, . . . , N . The once-

holed disk we are construcing will intersect the page St in the b-arcs
b(t) and a-arcs aji (t).

We start with the definition of the a-arcs. For t ∈ [0, 1] we define,
using Convention 4.2, aji (t) = αj

i an arc emanating from the positive

elliptic point wj
i for i = 0, . . . , n−1 and j = 1, . . . , N with the following

exceptions: For t ∈ [tk, tk+1] the a-arc ajk(t) is not defined (or empty)

and for t ∈ [tn, 1] the a-arc aj0(t) is not defined for all j = 1, . . . , N .
Now we define the b-arcs. For t ∈ [0, t1) we define, using Conven-

tion 4.2, bj(t) := ϕtw
L (γjn) an arc connecting the negative elliptic point

vj and the positive elliptic point wj
n. Note that

b(t) = (b1(t), . . . , bN(t)) = ϕtw
L (Γ) = Γ0.

The slice, D ∩ S0, of D by the page S0 has

p0(D ∩ S0) = ϕtw
L (Γ) ∪

{
αj
i

∣∣ i = 1, . . . , n− 1 and j = 1, . . . , N
}

where p0 : S0 → S is the diffeomorphism defined in Equation (2.3).
The left sketch of Figure 12 depicts the a-arcs and the b-arc of the slice
D ∩ S0 for a fixed j.

S0
(t = 0)

Stn+ε
(t = tn + ε)

wj
0

wj
1

wj
2

wj
n−1

wj
n

aj1(0)
aj2(0)

ajn−1(0)

bj(0)=ϕL(γ
j)

bj−1(0)

vj vj

wj
0

wj
1

wj
2

wj
n−1

wj
n

aj1(t)
aj2(t)

ajn−1(t)bj(t)=ϕtw
L (γj)

Figure 12. (Step 2) a-arcs and b-arcs in the pages S0

and Stn+ϵ.

For t ∈ (ti, ti+1) we define b(t) := Γi, and for t ∈ (tn, 1] we define
b(t) := Γn = Γ.
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At t = ti (i = 1, . . . , n) the isotopy type in S of b(t) changes from
b(ti−ε) = Γi−1 to b(ti+ε) = Γi, the a-arcs a

1
i (t), . . . , a

N
i (t) disappear,

and new a-arcs a1i−1(t), . . . , a
N
i−1(t) appear (no changes are made to

the rest of the a-arcs). This introduces N positive hyperbolic points
simultaneously whose describing arcs (see Figure 13) are parallel to γji
and connecting bj(ti − ε) and aji (ti − ε) for each j = 1, . . . , N . This
produces the fan shaped shaded region in the right sketch of Figure 16.
Since Γi−1 ≺disj Γi the describing arcs can be pairwise disjoint, which
enables us to simultaneously introduce the N hyperbolic points.

(t = ti − ε) (t = ti + ε)

wj
i−1 wj

i−1wj
i wj

i

vj vj

aji (t)

aji−1(t)

bj(t)
= γji−1

bj(t)
= γji

Figure 13. (Step 2) Movie presentation near t = ti.

Similar to the N = 1 case, the a-arcs aji (1) ⊂ S1 and aji (0) ⊂ S0

are identified by the monodromy ϕL for all i = 1, . . . , n − 1 and
j = 1, . . . , N . However, the N -tuples b(1) = Γ and b(0) = ϕtw

L (Γ)
cannot be identified by ϕL because ϕL(Γ) 6= ϕtw

L (Γ). Thus we get a
disk with a hole. The once-holed disk is contained in the left sketch
of Figure 16. The hole is a 2N -gon consisting of edges b1(0), . . . , bN(0)
and b1(1), . . . , bN(1) and vertices v1, . . . , vN and w1

0, . . . , w
N
0 .

(Step 3: Filing the holes)

We fill the 2N -gon hole by changing the family
{
b(t) = (b1(t), . . . , bN(t))

∣∣ 0 ≤ t ≤ t1 − ε
}
.

A similar technique is used in the case for N = 1. As a consequence of
the modification, some negative hyperbolic points will be introduced.
Take 0 < s1 < s2 < · · · < sN−1 < t1 − ε.

Let j = 1, . . . , N − 1. The j-th component bj(t) of b(t) is redefined
by

bj(t) := ϕL(γ
j) for t ∈ [0, sj) and

bj(t) := ϕtw
L (γj) for t ∈ (sj, t1 − ε).

In particular, b(t) := ϕL(Γ) for t ∈ [0, s1).
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At each t = sj we introduce a negative hyperbolic point h−j in the
page Ssj using a describing arc (the dashed arcs in Figure 14 for j =
1, 2) connecting bj(sj−ε) and bj+1(sj−ε) and contained in R(Γ, ϕL(Γ)).
Since the positive normals are pointing into the describing arcs the
signs of the hyperbolic points are both negative. Due to the hyperbolic
point, the isotopy type (in S) of bj(t) changes from ϕL(γ

j) to ϕtw
L (γj).

For j′ 6= j the isotopy type of bj
′
(t) does not change.

t = s1 − ε t = s1 + ε t = s2 − ε

v1 v2

v3v4

q1

q2

q3

q4

b1(t)
b2(t)

b3(t)b4(t) b1(t)=
ϕtw
L (γ1)

b4(t) b3(t)

b2(t)

b4(t)

Figure 14. (Step 3) Dashed arcs are describing arcs
for h−1 and h−2 . The shaded region is the boundary based
region R(Γ, ϕL(Γ)) and dashed arrows represent positive
normals.

The modified family ofN -tuples of b-arcs
{
b(t) = (b1(t), . . . , bN(t))

∣∣ 0 ≤ t ≤ t1 − ε
}

forms a 2N -gon (see Figure 15 where N = 4). Since R = R(Γ, ϕ(Γ))
contains k punctures, the 2N -gon and L intersect k times.

v3 v2

v1v4

w3
n

w2
n

w1
n

w4
n

h−1

h−2

h−3

Figure 15. The open book foliation of the 2N -gon in
Step 3. If k > 0 then k punctures should be added to it.

Therefore, the disk with a 2N -gon hole constructed in (Step 2) is
converted to a disk with N bigon holes. More precisely, for each j =
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1, . . . , N the pair of b-arcs bj(0) and bj(1) is forming a bigon. Since
b(0) = ϕL(Γ) and b(1) = Γ, now we can identify the b-arcs bj(0) and
bj(1) by the monodromy ϕL and all the holes are closed up. As a result,
we obtain a disk D in M(S,ϕ). The left sketch in Figure 16 depicts the
open book foliation of D.

: G++

:G−−

v4

v3 v2

v1

w4
n

w3
n

w2
n

w1
n

h−
1

h−
2h−

3

vj

wj
n

wj−1
n =wj

0

wj
1

wj
i

wj
i+1

Figure 16. (Left) The entire open book foliation of D
(where N = 4 and n = 3). (Right) Step 2 construction.

The open book foliation of the obtained disk D contains

• e+(D) = Nn positive elliptic points (from Steps 1 and 2)
• h+(D) = Nn positive hyperbolic points (from Step 2)
• e−(D) = N negative elliptic points (from Steps 1 and 2)
• h−(D) = (N − 1) negative hyperbolic points (from Step 3)

Since the self-linking number satisfies

sl(∂D) = −(e+(D)− h+(D)) + (e−(D)− h−(D)) = 1

D is a transverse overtwisted disk.

(Step 4: Modifying D into D)

By the same argument as in Step 4 of N = 1 case, we can modify D
into an overtwisted disk D that intersects the binding B (resp. braid
L) in N points (resp. k points). □

5. Application to depth of transverse links

Recall the depth of a transverse link defined by Baker and Onaran
[1]:
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Definition 5.1. [1] Let T be a transverse link in an overtwisted contact
3-manifold (M, ξ). The depth depth(T ;M) of T is defined by

depth(T ;M) = min{#(T ∩ D) | D is an overtwisted disk in (M, ξ)}.

The depth measures non-looseness of transverse links. In particular,
depth(T ;M) = 0 if and only if T is loose.

In [19] we have defined the overtwisted complexity n(S, ϕ) of an open
book (S, ϕ).

Definition 5.2. [19]. Let

n(S, ϕ) = min

{
e−(D)

∣∣∣∣ D is a transverse overtwisted disk
in (M(S,ϕ), ξ(S,ϕ))

}
where e−(D) is the number of negative elliptic points in the open book
foliation of D. We call n(S, ϕ) the overtwisted complexity of the open
book (S, ϕ).

Recall that the binding B(S,ϕ) is a transverse link. In [21, Theorem
3] it is shown that

(5.1) n(S, ϕ) = depth(B(S,ϕ);M(S,ϕ)).

Theorem 4.1 (Step 4 argument) and Equation (5.1) give the following
upper bounds of the depths of closed braids and the binding.

Corollary 5.3. Let (S, ϕ) be an open book supporting an overtwisted
contact structure, L be a closed braid in M(S,ϕ), and B(S,ϕ) be the bind-
ing.

(a) depth(B(S,ϕ);M(S,ϕ)) ≤ min{N | ϕ is N-twist left-veering}.
(b) depth(B(S,ϕ);M(S,ϕ)\L) ≤ min{N |ϕL is (N, 0)-twist left-veering}
(c) depth(L;M(S,ϕ)) ≤ min{k|ϕL is (N, k)-twist left-veering for some N}.
(d) depth(L∪B(S,ϕ);M(S,ϕ)) ≤ min{N+k|ϕL is (N, k)-twist left-veering}.

Question 5.4. Can the above inequalities (a), . . . , (d) in Corollary 5.3
be equalities?

Remark 5.5. In some cases depth(L∪B(S,ϕ);M(S,ϕ)) = depth(B(S,ϕ);M(S,ϕ)\
L) but in general

(5.2) depth(B(S,ϕ);M(S,ϕ) \ L)− depth(L ∪ B(S,ϕ);M(S,ϕ)) ≥ 0

and the difference can be arbitrary large.

The next lemma concerns the equality of (5.2).

Lemma 5.6. Suppose that N ≤ depth(B(S,ϕ);M(S,ϕ)). We have depth(L∪
B(S,ϕ);M(S,ϕ)) = N if and only if depth(B(S,ϕ);M(S,ϕ) \ L) = N .
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Proof. LetB := B(S,ϕ) andM :=M(S,ϕ). Suppose thatN ≤ depth(B;M).
(⇐): If depth(B;M \ L) = N then by

N ≤ depth(B;M) ≤ depth(L ∪B;M) ≤ depth(B;M \ L) = N

we get depth(L ∪ B;M) = N .
(⇒): Assume that depth(L∪B;M) = N . There exists an overtwisted

disk D that intersects L ∪B at N points. By

N ≤ depth(B;M) ≤ depth(L ∪ B;M) = N

all the N intersection points belong to B, and D ⊂ M \ L. Thus
depth(B;M \ L) ≤ |B ∩ D| = N . By (5.2) we get

N = depth(L ∪ B;M) ≤ depth(B;M \ L) ≤ N.

□
Question 5.4 for (a),(b) and (d) are answered affirmatively in the

case of depth 1:

Proposition 5.7. [21, Corollary 1] [22, Theorem 5.5] Suppose that
ξ(S,ϕ) is overtwisted. Let L be a closed braid in M(S,ϕ).

• depth(B(S,ϕ);M(S,ϕ)) = 1 if and only if ϕ is non-right-veering
(i.e. 1-twist left-veering).

• depth(L ∪ B(S,ϕ);M(S,ϕ)) = depth(B(S,ϕ);M(S,ϕ) \ L) = 1 if and
only if ϕL is non-quasi-right-veering (i.e., (1, 0)-twist left-veering).

Here is another fact supporting the affirmative answer to Ques-
tion 5.4. We prove equalities for (a) and (b) in the case of depth
2.

Theorem 5.8. Suppose that ξ(S,ϕ) is overtwisted. Let L be a closed
braid in M(S,ϕ).

• depth(B(S,ϕ);M(S,ϕ)) = 2 if and only if ϕ is right-veering and
2-twist left-veering.

• depth(B(S,ϕ);M(S,ϕ) \ L) = 2 if and only if ϕL is quasi-right-
veering and (2, 0)-twist left-veering.

Proof. We prove the second statement as the first statement is a special
case of the second. We denote M :=M(S,ϕ) and B = B(S,ϕ).

(⇒) Assume that depth(B;M \L) = 2. By Proposition 5.7 we know
that ϕL is quasi-right-veering. Thus, it is enough to show that ϕL is
(2, 0)-twist left-veering.

Let D be an overtwisted disk inM \L that intersects B in two points.
We recycle the argument in the proof of [21, Theorem 3]: Taking a pos-
itive transverse push-off of the Legendrian boundary ∂D, we can find a
disk D′ whose boundary ∂D′ is a transverse unknot with sl(∂D′) = 1.
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We may assume |D′∩B| = |D∩B| = 2. Using Pavelescu’s work [27, 28]
we can modify D′ to obtain a disk D′′ such that boundaries ∂D′ and
∂D′′ are transversely isotopic and ∂D′′ is in braid position with respect
to the open book (S, ϕ). We can further purtarb D′′ to obtain a trans-
verse overtwisted disk D. During the procedure, neither intersections
with L or negative intersections with B are introduced. That is,

D ⊂M \ L and e−(D) = |B ∩− D| ≤ |B ∩D| = 2.

If e−(D) = 1 then we can construct another overtwisted disk D′′′ in
M \L such that |B∩D′′′| = e−(D) = 1, that contradicts the assumption
depth(B;M \ L) = 2. Therefore,

e−(D) = |B ∩− D| = 2.

Denote the two negative elliptic points of Fob(D) by v1 and v2, and
the b-arc (if exists) in D ∩ St that starts at vi by bi(t) for t ∈ [0, 1]
and i = 1, 2. Since D is a transverse overtwisted disk (i.e., the graph
G−− is a tree) D has exactly one negative hyperbolic point, h− that is
connected to v1 and v2 by a singular leaf.
Let {Stn | n = 1, · · · , k} where 0 < t1 < t2 < · · · < tk < 1 be the set

of singular pages. Assume that the unique negative hyperbolic point
h− lies in St1 and each of the other singular pages contains exactly one
positive hyperbolic point.
For t 6= t1, . . . , tk the b-arcs define a 2-arc system

Γt := (b1(t), b2(t)) ∈ AB(S, P )

with the base B = {v1, v2} (Convention 4.2 is used here). We have

Γ0 = ϕL(Γ1).

Each positive hyperbolic point is formed by a pair of a-arc and b-arc.
Passing a positive hyperbolic point veers the b-arc to the right near its
base point and the resulting arc system is disjoint from the original
one. This gives for i = 2, . . . , k

Γti−ε ≺disj Γti+ε.

Since Γti+ε = Γti+1−ε we have

(5.3) Γt1+ε ≺disj Γt2+ε ≺disj · · · ≺disj Γtk+ε = Γ1.

A boundary based 4-gon region R(Γ1, ϕL(Γ1)) is formed in a neigh-
borhood of a describing arc of the negative hyperbolic point h− (the
shaded region in Figure 17). This can be easily seen if we shift the end
points of the describing arc close to v1 and v2 (see the left sketch in
Figure 17). It follows that ϕtw

L (Γ1) = Γt1+ε. With (5.3) we obtain

ϕtw
L (Γ1) �right Γ1.
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The 4-gon R(Γ1, ϕL(Γ1)) is not punctured since L is disjoint from the
transverse overtwisted disk D; i.e., ϕL is (2, 0)-twist left-veering.

...

t = 0 t = t1 + ε t = t2 + ε t = 1

Glued by ϕL

v1

v2

b1(0)=ϕL(b
1(1))

b2(0)=ϕL(b
2(1))

b1(t)
=ϕtw

L (b1(1))

b2(t)
=ϕtw

L (b1(2))

b1(1)

b2(1)

Figure 17. Movie presentation of a transverse over-
twisted disk with two negative elliptic points.

(⇐) This implication follows by Corollary 5.3 and Proposition 5.7.
□

Corollary 5.9. If ϕ is right-veering and ξ(S,ϕ) is overtwisted then depth(L∪
B(S,ϕ);M(S,ϕ)) = 2 if and only if ϕL is quasi-right-veering and (2, 0)-
twist left-veering.

Proof. By Proposition 5.7, the map ϕ is right-veering if and only if
2 ≤ depth(B(S,ϕ),M(S,ϕ)). By Lemma 5.6, depth(L ∪ B(S,ϕ);M(S,ϕ)) = 2
if and only if depth(B(S,ϕ),M(S,ϕ) \ L) = 2, which is equivalent to ϕL is
quasi-right-veering and (2, 0)-twist left-veering by Theorem 5.8. □

6. Connection to Wand’s inconsistency

In this section we discuss the relation between (N, 0)-twist left-
veering and Wand’s inconsistency. We begin with definitions of over-
twisted region and inconsistent mapping class that Wand introduced
in [30], where the puncture set P is empty.

Definition 6.1 (Wand). Let ϕ ∈ MCG(S) and Γ ∈ AB(S) an N -arc
system with N ≥ 1. A pair (S, ϕ,Γ) consisting of open book (S, ϕ)
and arc system Γ is called an augmented open book. An overtwisted
region in the augmented open book (S, ϕ,Γ) is a 2N -gon disk A em-
bedded in S (when N = 1 relaxing the condition that Γ and ϕ(Γ)
intersect efficiently, A can be a bigon) and ∂A ⊂ (Γ ∪ ϕ(Γ)) satisfying
the following:

(1) The orientation of ∂A
• agrees with that of ϕ(Γ) and disagrees with that of Γ, or
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• disagrees with that of ϕ(Γ) and agrees with that of Γ.
(2) Each point of Γ ∩ ϕ(Γ) ∩ int(S) is a corner of A. Corners of

A alternate between points in ∂Γ = B ∪ Γ(1) and points in
Γ ∩ ϕ(Γ) ∩ int(S).

(3) A is the unique such disk.

As the name suggests, Wand showed that:

Proposition 6.2 (Wand). If (S, ϕ,Γ) has an overtwisted region then
(S, ϕ) supports an overtwisted contact structure.

Remark 6.3. Wand’s proof of the above statement does not immedi-
ately generalize to surfaces with P 6= ∅. His construction of an over-
twisted disk D uses Γ× [0, 1] as part of D, but in general Γ× [0, 1] may
intersect the transverse link L that corresponds to P .

Moreover, even the definition of an overtwisted region does not imme-
diately extend to the case where P 6= ∅: Assume that ϕL ∈ MCG(S, P )
with f(ϕL) = idS ∈ MCG(S) under the forgetful map f : MCG(S, P ) →
MCG(S). Note the contact structure supported by the open book
(S, idS) is tight. If ϕL(γ) ≺right γ and the arcs ϕL(γ), γ bound a punc-
tured bigon at the base point, then the conditions (1)-(3) are satisfied,
which means the contact structure is overtwisted.

In Figure 18 we compare overtwisted regions and boundary based
regions. They share many common properties:

overtwisted region boundary based region
2N -gon yes yes
corners alternate
between ∂S and int(S) yes yes
edges alternate Γ and ϕ(Γ) yes yes
unique yes yes
embedded (Definition 3.5) yes not required
int(Γ) ∩ int(ϕ(Γ))
?
= non-base corners of R yes = allowed to be ⊆
work with punctures
(Remark 6.3) no yes

Figure 18. Comparison of overtwisted region and
boundary based region.

On the other hand, Example 6.4 highlights their difference:

Example 6.4. Let S be a genus 0 surface with four boundary com-
ponents, a, b, c, d. Let e ⊂ S be a simple closed curve that separates
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a and b from c and d. Let ϕi,j,k = T i
aT

j
b TcTdT

−k−1
e where i, j, k ≥ 1.

As shown in Theorem 4.1 of [18], the open book (S, ϕi,j,k) supports an
overtwisted contact structure. We see a Type (2, 0) boundary based
region R(Γ, ϕ(Γ)) for a 2-arc system Γ = (γ1, γ2) in Figure 19, and in
fact ϕi,j,k is (2, 0)-twist left veering. However, notice that R(Γ, ϕ(Γ)) is
not an overtwisted region as it violates Condition (2) in Definition 6.1.

a

b

c d

i

j − 1

i− 1

2k − 1

2k + 1

j

ϕ(γ1)

γ1

ϕ(γ2)

γ2

R(Γ, ϕ(Γ))

Figure 19. (Example 6.4). The boundary based region
R(Γ, ϕ(Γ)) is not an overtwisted region. The gray box
labeled i contains i parallel strands. The dashed arc
labeled i− 1 represents i− 1 parallel copies of the arc.

Theorem 6.5 and Proposition 6.6 show that an overtwisted region
can be understood as a special type of boundary based region:

Theorem 6.5. Let Γ be an N-arc system with N ≥ 2 such that a
boundary based region R(Γ, ϕ(Γ)) is formed. Then R(Γ, ϕ(Γ)) is an
overtwisted region if and only if

• ϕtw(Γ) �right Γ,
• int(ϕtw(Γ)) ∩ int(Γ) = ∅, and
• R(Γ, ϕ(Γ)) is embedded; that is, int(R(Γ, ϕ(Γ))) ∩ Γ = ∅.

Proof. (⇐) Assume that ϕtw(Γ) �right Γ, int(ϕ
tw(Γ)) ∩ int(Γ) = ∅, and

int(R(Γ, ϕ(Γ))) ∩ Γ = ∅. We will check that Conditions (1), (2), and
(3) of Definition 6.1 are satisfied.

Condition (1) is clearly satisfied.
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Since int(R(Γ, ϕ(Γ))∩Γ = ∅ we have ∂R(Γ, ϕ(Γ))∩int(ϕ(Γ))∩int(Γ) =
{q1, . . . , qN}. Condition (2) follows by:

Γ ∩ ϕ(Γ) ∩ int(S)

= [int(ϕtw(Γ)) ∩ int(Γ)] ∪ [∂R(Γ, ϕ(Γ)) ∩ int(ϕ(Γ)) ∩ int(Γ)]

= {q1, . . . , qN}.

Before we proceed to (3) we recall that, unlike boundary based re-
gions, in Definition 6.1 of an overtwisted region A, the corners of A
are not required to contain the base points B of Γ. Therefore, the
uniqueness property (♦) of a boundary-based region does not imply
the uniqueness condition (3) of an overtwisted region.

Assume to the contrary that Condition (3) does not hold; namely,
R(Γ, ϕ(Γ)) is not the unique disk in the augmented open book (S, ϕ,Γ).
Then by Condition (2), a boundary based region R(Γ, ϕ(Γ)) 6= ∅ must
be formed, where Γ denotes the arc system Γ with the reversed ori-
entation (so the set of base points of Γ is Γ(1), not B), see Figure 20
(a). We note that R(ϕtw(Γ),Γ) also exists as it contains R(Γ, ϕ(Γ)), see

(a) (b)

Figure 20. (a) Two regions satisfying Conditions (1)
and (2) but (3). The black (resp. gray) oriented arcs
represent Γ (resp. ϕ(Γ)). (b) The boundary based region
R(ϕtw(Γ),Γ). The oriented dashed arcs represent ϕtw(Γ).

Figure 20 (b). By Proposition 3.6 this implies ϕtw(Γ) 6�right Γ which
contradicts the assumption.

(⇒) Assume that R(Γ, ϕ(Γ)) is an overtwisted region satisfying (1)–
(3) of Definition 6.1. We observe that Condition(2) implies int(ϕtw(Γ))∩
int(Γ) = ∅ and int(R(Γ, ϕ(Γ))) ∩ Γ = ∅. Thus, we are left to show
ϕtw(Γ) �right Γ.

We want to point out that int(ϕtw(Γ))∩ int(Γ) = ∅ does not immedi-
ately imply ϕtw(Γ) �right Γ. This is because the arc systems ϕtw(Γ) and
Γ share not only the same set of base points B but also the terminal
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points Γ(1), which means the condition ϕtw(Γ) ∩ Γ = B in Definition
3.3 of ≺disj is not satisfied. In other words, we have ϕtw(Γ) 6≺disj Γ.

Denote

(γ1, . . . , γN) := Γ,

(γ10 , . . . , γ
N
0 ) := Γ0 := ϕtw(Γ),

and B = (v1, . . . , vN) the base point set for Γ and Γ0. We will find a
sequence such that

(6.1) ϕtw(Γ) = Γ0 ≺disj Γ1 ≺disj Γ2 ≺disj Γ

which concludes ϕtw(Γ) �right Γ.
For j = 1, . . . , N let Rj be the connected component of S \ (Γ0 ∪ Γ)

which lies between γj0 and γj. We note that Rj cannot be a boundary
based region due to the uniqueness Condition (3). It is possible that
Rj = Rk for some j 6= k, and R1 = · · · = RN is also possible.

(Case 1): If ∂Rj ∩ ∂S has positive measure (or positive length), we
can find simple arcs γj1 ≺disj γ

j
2 in Rj connecting vj and the boundary

∂S so that Γ1 = (γ11 , . . . , γ
N
1 ) and Γ2 = (γ12 , . . . , γ

N
2 ) formN -arc systems

∈ AB(S) and satisfy (6.1).

(Case 2): If ∂Rj∩∂S is a set of discrete points then R1 = · · · = RN

(call it R⋆) whose boundary is

∂R⋆ = γ10 ∪ γ1 ∪ γ20 ∪ γ2 ∪ · · · ∪ γN0 ∪ γN

where γ is the arc γ with the reversed orientation. We claim that R⋆ has
non-trivial genus: If R⋆ was a disk with 2N sides, that would contradict
Condition (3) that R(Γ, ϕ(Γ)) is the unique overtwisted region in the
augmented open book (S, ϕ,Γ).

We can always find arc systems Γ1 = (γ11 , . . . , γ
N
1 ) and Γ2 = (γ12 , . . . , γ

N
2 ) ∈

AB(S) satisfying (6.1) as follows.
Take an arc in R⋆ starting at v1 and terminating at vN so that it

does not separate R⋆. Then move the terminal point slightly to the
right of vN and call it γ11 . To define γj1 for j = 2, . . . , N , consider
the arc γj0 ∗ γj−1 ⊂ ∂R⋆ starting at vj and terminating at vj−1. Move

the terminal point to the right side of vi−1 then call it γj1. It satisfies
γj ≺disj γ

j
1 and Γ0 ≺disj Γ1. See the gray arcs in Figure 21.

Next take γ12 be an arc starting at v1 and terminating on the left-
hand side of v1 so that it is disjoint from Γ1 = (γ11 , . . . , γ

N
1 ) and that

γ11 ≺disj γ
2
1 ≺disj γ

1. To define γj2 for j = 2, . . . , N , consider the arc

γj0 ∗ γj−1 ∗ γj−1
0 ∗ · · · ∗ γ20 ∗ γ1 ∗ γ12



TWIST LEFT-VEERING OPEN BOOKS 37

that starts at vj and terminates at v1. Move the terminal point to
the left side of v1 so that it becomes a simple arc which we call γj2. It
satisfies γj1 ≺disj γ

j
2 ≺disj γ

j. We make γ12 , . . . , γ
N
2 pairwise disjoint (see

the dotted arcs in Figure 21) to achieve (6.1). □

v1

γ10

γ11

γ12

γ1

v2

v3

v4

: Γ0

: Γ1

: Γ2

: Γ

Figure 21. (Case 2): Construction of N -arc systems
ϕtw(Γ) = Γ0 ≺disj Γ1 ≺disj Γ2 ≺disj Γ where N = 4.

When N = 1 a parallel statement to Theorem 6.5 holds:

Proposition 6.6. Let γ be an arc (i.e., a 1-arc system) in S. The
augmented open book (S, ϕ, γ) has an overtwisted region if and only if
ϕtw(γ) �right γ and that int(ϕtw(γ)) ∩ int(γ) = ∅.

Proof. Note that ϕ(γ) = ϕtw(γ) since γ is a 1-arc system.
(⇒) Suppose that (S, ϕ, γ) has a bigon overtwisted region. Reversing

the orientation of γ if necessary, we may further assume that the bigon
is at the base point γ(0). By the uniqueness property (3) of Defini-
tion 6.1 we know that ϕ 6= id. After removing the bigon formed by γ
and ϕ(γ) we see that ϕ(γ) ≺right γ and ϕ(γ)∩γ = ∂γ; that means γ and
ϕ(γ) are almost disjoint. Since ϕ 6= id the component of S \ (ϕ(γ)∪ γ)
that lies between ϕ(γ) and γ at the base point γ(0) is not a disk. Ap-
plying Honda, Kazez and Matić’s algorithm [16] we can find a sequence
of arcs with

ϕ(γ) ≺disj γ1 ≺disj . . . ≺disj γl ≺disj γ,

thus ϕtw(γ) = ϕ(γ) �right γ.
(⇐) Assume that ϕtw(γ) �right γ and that int(ϕtw(γ)) ∩ int(γ) = ∅.

Since ϕtw(γ) = ϕ(γ) we have int(ϕ(γ)) ∩ int(γ) = ∅ so by isotopy, ϕ(γ)
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and γ form a bigon at the base point which is an overtwisted region for
(S, ϕ, γ). □

Now we recall the definition of inconsistency.

Definition 6.7 (Wand). A class ϕ ∈ MCG(S) is inconsistent if there
is some arc system Γ in S and a stabilization (S ′, ϕ′) of (S, ϕ) such
that (S ′, ϕ′, ι(Γ)) has an overtwisted region, where ι : S → S ′ is the
inclusion map (for simplicity ι(Γ) is denoted by Γ in the following).
Otherwise, ϕ is consistent.

Inconsistency is a central concept in Wand’s work due to the follow-
ing result:

Theorem 6.8. [30, Theorem 1.1] (S, ϕ) supports an overtwisted contact
structure if and only if ϕ is inconsistent.

We obtain the following corollary.

Corollary 6.9. An open book (S, ϕ) supports an overtwisted contact
structure if and only if a stabilization of (S, ϕ) is N-twist left-veering
for some N .

Proof. (⇐) is exactly Theorems 4.1. (⇒) follows from Theorem 6.5,
Proposition 6.6 and Wand’s Theorem 6.8. □

7. Variation of twist-left-veering and virtual looseness

Non-right-veering closed braids are not necessarily loose but they
are virtually loose; that is, some finite cover of its complement is over-
twisted [23, Corollary 5.7]. In this section we generalize the result from
arcs to N -arc systems. We do this by introducing �∂+P

right , a variation
of the ordering �right.

We begin with reviewing the standard branched cyclic coverings
studied in [23], and then discuss how twist-left-veering can be related
to virtual looseness.

Let T = T1∪· · ·∪Tm be anm-component transverse link in a contact
3-manifold (M, ξ). Let µi ∈ π1(M \T ) be represented by a meridian of
Ti. In the following, we assume that all µi are non-trivial. Note that if
M contains no S1 × S2 summands (i.e., M is irreducible) every link in
M satisfies this property (cf. the proof of Proposition 1.4 in [14]).

Since π1(M \ T ) is residually finite [15, Theorem 1.1], there exists a
finite group Gi and a homomorphism

fi : π1(M \ T ) → Gi

such that fi(µi) 6= 1. Let f : π1(M \ T ) → G1 × G2 × · · · × Gm

be a homomorphism defined by f(x) = (f1(x), f2(x), . . . , fm(x)). Let
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G := image(f). Then G is a non-trivial subgroup of G1×G2×· · ·×Gm,
in particular G is a non-trivial finite group, and

f : π1(M \ T ) → G

is a surjective homomorphism such that f(µi) 6= 1 for all i. Let

π : (M̃, ξ̃) → (M, ξ)

be the covering branched along T [9, 26] such that the restriction π :

M̃ \ T̃ →M \ T is a normal covering that corresponds to ker(f).
Assume that (M, ξ) is supported by an open book (S, ϕ) and T

is represented by a closed n-braid L in (S, ϕ) with the distinguished
monodromy ϕL ∈ MCG(S, P ) where P is a set of n interior points of
S.

Assume that S has k + 1 boundary components, C0, . . . , Ck. Take a
base point v on C0. Let σj (j = 1, . . . , k) be a path in S \P connecting
v and a point on Cj. As shown in [6]

π1(M \ T ) =
〈
s ∈ π1(S \ P )

∣∣∣ sϕL∗(s
−1), σjϕL∗(σj) (j = 1, . . . , k)

〉
.

Here σj is the path σj with the reversed orientation, hence σjϕL∗(σj)

represents a loop in S \P . Note that π1(M \ T ) is a quotient group of
π1(S \ P ). Let

q : π1(S \ P ) → π1(M \ T )

denote the quotient map. Define a surjective homomorphism

f ′ := f ◦ q : π1(S \ P ) → G.

Let

(7.1) πS : (S̃, P̃ ) → (S, P )

be the branched covering that corresponds to ker(f ′). Since πS is a
normal covering, the property that f(µi) 6= 1 ∈ G for all i = 1, . . . ,m

implies that the branched covering πS : (S̃, P̃ ) → (S, P ) is fully ramified

with branch set P . That is, in a neighborhood of each p̃ ∈ π−1
S (p) ⊂ P̃

the map πS is a non-trivial branch covering.
The presentation of π1(M \ T ) implies that q ◦ ϕL∗ = q. Therefore,

f ′◦ϕL∗ = f◦q◦ϕL∗ = f◦q = f ′. By the lifting criterion [13, Proposition
1.33] there is a diffeomorphism

(7.2) ϕ̃L : (S̃, P̃ ) → (S̃, P̃ )

such that ϕL ◦ πS = πS ◦ ϕ̃L.

Lemma 7.1. If the lift ϕ̃L : (S̃, P̃ ) → (S̃, P̃ ) is (N, 0)-twist-left-veering
then T is virtually loose.



40 TETSUYA ITO AND KEIKO KAWAMURO

Proof. The preimage L̃ := π−1(L) is a closed braid representating T̃ =

π−1(T ) and its distinguished monodromy is ϕ̃L. If ϕ̃L is (N, 0)-twist-

left-veering then by theorem 4.1 (2) L̃ is loose. Thus T is virtually
loose. □
The above lemma motivates us to ask when the lift ϕ̃L becomes

twist-left-veering. To this end, we extend the right-veering orderings
to a slightly bigger set.

Definition 7.2. We introduce the following:

• A (∂ + P )-arc γ is an oriented properly embedded arc in S \ P
with the starting point γ(0) ∈ ∂S and the terminal point γ(1) ∈
∂S ∪ P .

• A (∂+P )-arc system Γ = (γ1, . . . , γN) is defined similarly with
Γ(1) ⊂ ∂S ∪ P .

• Let A∂+P
B (S, P ) denote the set of (∂+P )-arc systems that start

at B ⊂ ∂S.
• The orderings≺right and�right, and the relation ≺disj onAB(S, P )
can be extended to A∂+P

B (S, P ) and denoted by ≺∂+P
right , �

∂+P
right ,

and ≺∂+P
disj respectively.

Remark 7.3. By the definition AB(S, P ) ⊂ A∂+P
B (S, P ).

For Γ,Γ′ ∈ AB(S, P ) ⊂ A∂+P
B (S, P ), we have Γ ≺right Γ

′ if and only if
Γ ≺∂+P

right Γ′. However, in general Γ �∂+P
right Γ′ does not imply Γ �right Γ

′

since Γ ≺∂+P
disj Γ′ does not imply Γ ≺disj Γ

′.

As stated in Proposition 3.6, when the boundary based region R(Γ,Γ′)
is nonempty then Γ 6�right Γ

′. The next lemma states that this is not
the case for �∂+P

right .

Lemma 7.4. If a boundary based region R(Γ,Γ′) is embedded (i.e.,
its interior does not intersect Γ) and contains a puncture point, then
Γ �∂+P

right Γ
′ (see Figure 22).

Let πS : (S̃, P̃ ) → (S, P ) be a fully ramified branched covering
with branched set P . For example, the above branched covering (7.1)
satisfies this property. For each base point vj ∈ B we choose a lift

ṽj ∈ π−1
S (vj) ⊂ ∂S̃ and define a set of base points B̃ = {ṽ1, . . . , ṽN} for

S̃. For an N -arc system Γ = {γ1, . . . , γN} ∈ AB(S, P ), we denote by

Γ̃ = {γ̃1, . . . , γ̃N} ⊂ AB̃(S̃, P̃ ) the N -arc system such that γ̃j is the lift
of γj with γ̃j(0) = ṽj.

Proposition 7.5. For Γ,Γ′ ∈ AB(S, P ), if Γ �∂+P
right Γ

′ then Γ̃ �right Γ̃′

in AB̃(S̃, P̃ ).
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Γ Γ′

Γ1 Γ2 Γ3

Figure 22. Embedded boundary based re-
gion with puncture gives Γ �∂+P

right Γ′ by

Γ ≺∂+P
disj Γ1 ≺∂+P

disj Γ2 ≺∂+P
disj Γ3 = Γ′

Proof. Assume that Γ �∂+P
right Γ

′. Then there is a sequence of (∂+P )-arc
systems Γ1, . . . ,Γk−1 such that

Γ =: Γ0 ≺∂+P
disj Γ1 ≺∂+P

disj · · · ≺∂+P
disj Γk−1 ≺∂+P

disj Γk := Γ′.

For each Γi = (γ1i , . . . , γ
N
i ) ∈ A∂+P

B (S, P ) we construct Γ∗
i = (γ∗i

1, . . . , γ∗i
N) ∈

AB(S, P ) as follows: For j = 1, . . . , N , if the terminal point of the j-th
arc γji lies on ∂S, then we define γ∗i

j := γji . If the terminal point of γji
is a puncture point p ∈ P then we define (see Figure 23)

γ∗i
j := γji ∗ cp ∗ γ

j
i .

where cp is a small loop around the point p clockwise. We slightly move

the terminal point of γ∗ji to the right of vi along the boundary.

By the construction, γ∗i
j is disjoint from γ∗j

′

i±1 if j′ 6= j. When j′ = j

we have γ∗ji ∩ γ∗ji±1 6= ∅ (see the hollowed point near vj in Figure 23).
Since we assume that the covering πS is fully ramified, the loop cp
cannot lift to a loop. This means that the intersection point can be
removed in the covering space. Thus, we have

Γ̃ ≺disj Γ̃∗
1 ≺disj · · · ≺disj Γ̃∗

k−1 ≺disj Γ̃′,

which means Γ̃ �right Γ̃′ in AB̃(S̃, P̃ ). □

Definition 7.6. Let L be a closed braid with respect to an open book
(S, ϕ). If there is an N -arc system Γ ∈ AB(S, P ) such that

ϕtw
L (Γ) �∂+P

right Γ in A∂+P
B (S, P )
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γji−1

γ∗ji−1

γji

γ∗ji

γji+1

γ∗ji+1

vj

Figure 23. Construction of γ∗ji . The intersection point

of γ∗i
j and γ∗ji+1 disappears when we take lifts.

and the associated boundary based region R(Γ, ϕL(Γ)) has type (N, k)
then we say that ϕL is weakly (N, k)-twist left veering.

Remark 7.7. When N = 1, [22, Corollary 7.6] implies that γ �∂+P
right γ

′

if and only if γ ≺right γ
′. Thus weakly (1, 0)-twist left-veering is nothing

but non-right-veering.

Theorem 4.1 states that if ϕL is (N, 0)-twist left veering then L is
loose. In the next theorem, with a weaker condition we show that L is
virtually loose.

Theorem 7.8. Assume that all the meridians of L are homotopically
non-trivial. If ϕL is weakly (N, 0)-twist left-veering then L is virtually
loose.

Proof. Let N = 1. By Remark 7.7, ϕL is non-right-veering. Then by
[23, Corollary 5.7], L is virtually loose.

Let N > 1. Let ϕ̃L : (S̃, P̃ ) → (S̃, P̃ ) be a lift of ϕL : (S, P ) →
(S, P ) as in (7.2). With a suitable lift of the base B, ϕ̃L(Γ̃) and Γ̃
can form a non-punctured boundary based region which is a lift of

the non-punctured R(Γ, ϕL(Γ)) and we have ϕ̃tw
L (Γ) = ϕ̃L

tw(Γ̃). Since

ϕtw
L (Γ) �∂+P

right Γ by Proposition 7.5 we obtain ϕ̃L
tw(Γ̃) = ϕ̃tw

L (Γ) �right

Γ̃. Thus, ϕ̃L is (N, 0)-twist left-veering. By Lemma 7.1 L is virtually
loose. □

8. Examples

Example 8.1. (3-twist left veering) Let S be a sphere with 9 boundary
components. Let ai, bi, ci with i = 1, 2, 3 be simple closed curves as
depicted in Figure 24. Let

ϕ = Tc1Tc2Tc3Tb1Tb2Tb3T
−1
a1
T−1
a2
T−1
a3

∈ MCG(S).
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Let Γ be an arc system as shown in Sketch (1). Then ϕ is 3-twist
left veering with the boundary based region R(Γ, ϕ(Γ)) in Sketch (3).
However, R(Γ, ϕ(Γ)) is not an overtwisted region as it violates the
Condition (2) in Definition 6.1.

This construction can be generalized to N -twist left veering for any
N ≥ 2. The construction works under additional genera and boundary
components.

(1) (2)
a1

a2

a3

Γ

c1 b1

b2

c2 b3

c3

R

(3) (4)

ϕ(Γ) ϕtw(Γ)

Figure 24. (Example 8.1). (1) The circles
a1, a2 and a3 and the 3-arc system Γ. (2)
The arc system T−1

a1
T−1
a2
T−1
a3

(Γ) and the circles
b1, b2, b3, c1, c2, c3. (3) The arc system ϕ(Γ) where
ϕ = Tc1Tc2Tc3Tb1Tb2Tb3T

−1
a1
T−1
a2
T−1
a3

and the boundary
based region R(Γ, ϕ(Γ)). (4) The arc system ϕtw(Γ).

Example 8.2. (Weakly (3, 0)-twist left veering but not twist left veer-
ing) Let S be a sphere with six boundary components and six punc-
tures. Let ai, bi, ci with i = 1, 2, 3 be simple closed curves as depicted
in Figure 25. Let

ϕL = Tc1Tc2Tc3Tb1Tb2Tb3T
−1
a1
T−1
a2
T−1
a3

∈ MCG(S, P ).
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Sketch (4) shows that ϕL is weakly (3, 0)-twist left veering with the
boundary based region R(Γ, ϕL(Γ)) in Sketch (3); thus, by Theorem 7.8
the link L is virtually overtwisted.

Under the forgetful map f : MCG(S, P ) → MCG(S) the distin-
guished monodromy ϕL becomes ϕ = f(ϕL) that is isotopic to a prod-
uct of positive Dehn twists (note the negative Dehn twist about ai and
the positive Dehn twist about ci cancel each other after forgetting the
punctures). That is, (S, ϕ) supports a tight contact structure and L is
non-loose. By Theorem 4.1-(2) we can conclude that ϕL is not twist
left veering.

This construction can be generalized to weakly (N, 0)-twist left veer-
ing for anyN ≥ 2. The construction may work under additional genera,
boundary components and punctures.

(1) (2)
a1

a2

a3

Γ

c1 b1

b2

c2 b3

c3

R

(3) (4)

ϕ(Γ) ϕtwL (Γ)

Figure 25. (Example 8.2). (1) The circles
a1, a2 and a3, and the 3-arc system Γ. (2)
The arc system T−1

a1
T−1
a2
T−1
a3

(Γ) and the circles
b1, b2, b3, c1, c2, c3. (3) The arc system ϕL(Γ) where
ϕL = Tc1Tc2Tc3Tb1Tb2Tb3T

−1
a1
T−1
a2
T−1
a3

and the boundary
based region R(Γ, ϕ(Γ)). (4) The arc system ϕtw

L (Γ).
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