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1. Introduction

Studies of monodromy representations in families of algebraic curves naturally arise
in Grothendieck’s anabelian geometry ([Gr1], [Gr2], [S97]), and many authors have en-
riched arithmetic and geometric phenomena surrounding the (outer) profinite universal
monodromy representation

φg,n : π1(Mg,n/Q)→ Out(Π̂g,n)

of the Galois-Teichmüller modular group π1(Mg,n/Q) in the profinite surface group Π̂g,n

of type (g, n), i.e., of genus g and n punctures (cf. e.g. [AMO], [Lo12]).
Grothendieck has already pointed out in his Esquisse [Gr2] significance of the ba-

sic pieces M0,4, M0,5, M1,1 and M1,2 that should play fundamental roles in what he
called the “Galois-Teichmüller tower”. Recently, deep aspects of φ1,1 (constructed from
the projection M1,2 → M1,1) have been focused and revealed from several different
viewpoints of topology, algebraic geometry, combinatorial group theory, and represen-
tation theory (e.g., [E14], [H], [HM], [BS], [MSS], [Br] and references therein). Through
these works one could also view a number of bridges from the lego-structured skytree
{φg,n : π1(Mg,n/Q) → Out(Π̂g,n)}2−2g−n<0 to marvelous landscapes of important re-
seach areas such as multiple zeta values, (motivic) elliptic polylogarithms ([BL94], [Go98],
[HK99], [BK10], [Woj04] etc.), iterated modular forms (e.g., [GKZ06] [Ma06]), Johnson
homomorphisms and related combinatorial objects (e.g., [CKV13], [ES14], [KK]).

The aim of this article is to introduce another arithmetic viewpoint in which φ1,1

provides a profinite version of the Eisenstein cocycles Ψk : SL2(Z) → Symk−2(Q2) (k ∈
Z≥2) that interpolate amplitudes of the Eichler-Shimura integrals of Eisenstein series.
Traditionally in number theory, Eisenstein cocycles were extended to cocycles on GL2(Q)
to play certain roles in the theory of automorphic forms and L-functions (cf. [Scz], [St87]).
However, taking account of the profinite topology of SL2(Z) leads us to extend Ψk in
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another direction towards the congruence kernel CSL2 := Ker(SL2(Z)∧ → SL2(Ẑ)). The

resulting map Ψ̂k : CSL2 → Symk−2(Ẑ2), which we call the profinite Eisenstein periods,
is the main subject to discuss below.

To outline our arithmetic strategy to approach the subject, let us introduce some more
terminology. Given a smooth family of hyperbolic curves over a noetherian normal Q-
scheme S, there arises a natural exact sequences of etale fundamental groups

1→ π1(Cξ̄, ξ̃)→ π1(C, ξ̃)→ π1(S, ξ̄)→ 1,

where ξ̄ is a geometric point on S, Cξ̄ the geometric fiber of C/S over ξ̄, and ξ̃ a lift of ξ̄
on Cξ̄. This induces the associated outer monodromy representation

φC/S : π1(S, ξ̄)→ Out(π1(Cξ̄, ξ̃)).

By anabelian philosophy, non-isotrivial information of the deformation of hyperbolic
curves C/S should be reflected largely in the image of the arithmetic fundamental group

π1(S) into the (outer) automorphisms of finitely generated profinite group π1(Cξ̄, ξ̃). In
particular, we may expect group-theoretical interpretation of arithmetic-geometric prop-
erties of C/S. Since the group homomorphism structure of φC/S is independent of the

choice of ξ̄, ξ̃, we often abbreviate references to base points for π1.
When S is the spectrum of a field k, π1(S) is the absolute Galois group Gk = Gal(k̄/k)

and φC/k : Gk → Out(π1(Cξ̄)) is called the outer Galois representation for the curve C/k.
The most basic case C/k = P1 − {0, 1,∞}/Q has been intensively studied by Y.Ihara
([I86], [I90], [I99]), where a highly arithmetic object called the universal Jacobi sum power
series J : Gk → Zl[[T1, T2]]

× was discovered to represent the meta-abelian reduction of
φC/k. Remarkably, the coefficient characters of his power series were explicitly connected
to the Soule characters induced from the cyclotomic elements of K-theory.

In 1990s, the author tried to extend Ihara’s theory to higher genus curves C/k to
obtain hints to Grothendieck’s anabelian conjecture (cf. [NTM]), and as a first step, looked
at the case of C/k being an elliptic curve E minus one point partly in collaboration
with H.Tsunogai. We investigated S. Bloch’s construction i) of fundamental power series
E (l) : Gk(E[l∞]) → Zl[[T1, T2]] illustrated in [Bl84] (cf. [Tsu95a]), where k(E[l∞]) is the field
obtained by adjoining the coordinates of all the torsion points of E of l-power orders. Like
Ihara’s power series, this captures the meta-abelian reduction of φE−{O}/k, and was found
in [N95] that the coefficient characters are given explicitly by certain Galois characters
defined by “theta invariants” of the elliptic curve. In this article, we consider the Bloch-
Tsunogai construction for a family of elliptic curves C := E −{O} over a base scheme S,
and focus on the profinite monodromy representation

E : π1(S∞) −→ Ẑ[[Ẑ2]]

with S∞ the pro-etale cover of S trivializing the torsions of E. See (4.1) for more details.
The representation E has the following two primary features:

• If the elliptic curve degenerates into a nodal cubic (Tate curve over S = Q[[q]]),
then E turns out to be reduced to a logarithmic derivative of J with one variable
degenerate ([N99]).

i)Bloch constructed the power series modulo constant term and Tsunogai lifted it to be associated with
constant term. For an explicit description of the constant term, see [N13] §6.10.
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• If we vary elliptic curves in the universal family over the “fine” j-line as S, then we
obtain E geometrically approximated by what we mean by the “profinite Eisenstein
periods” in the title.

In §7-8 we will closely discuss the above second aspect which had been developed after a
hint posed by T.Ibukiyama given to the author in 1993: Can one relate the universal power
series E with “Dedekind sums” in some way analogous to the relation of Ihara’s power
series with Jacobi sums? The following table summarizes our answer with comparison of
key words.

fundamental group special values coefficients

J π1(P
1 − {0, 1,∞}/Q) Jacobi sum Soule characters

E π1(E − {O}/Q(j)) Dedekind sum Eisenstein cocycle

The entry of ‘Dedekind sum’ above should read, in more precise terms, ‘period of division
℘-values’ which is a certain linear sum of generalized Rademacher functions defined by
Dedekind sums (see Theorem 8.5).

The main body of the following sections is based on my two Japanese articles [N02r],
[N02j], except for §5 that consists of gadgets from [NT] (cited from [AN95]).

2. Dedekind sums and Rademacher functions

For a rational number x ∈ Q, we denote by ⌊x⌋ the maximal integer less than or equal
to x and call ⌊∗⌋ : Q→ Z the flooring function. The flooring function which at first sight
appears only destroying the precious algebraic structure of Q is, in fact, well known to
play important roles in various subtle arithmetic, for example, in the third proof by Gauss
of the reciprocity law of quadratic residue symbols.

R.Dedekind, in his note published in the collected work of Riemann [D], gave a trans-
formation for the Dedekind η-function

η(τ) = eπiτ/12
∞∏
n=1

(1− e2πinτ ) (τ ∈ C, ℑ(τ) > 0)

by Riemann’s method, in which introduced is the so-called the Dedekind sum s(a, c) for
a pair of mutually prime integers a, c (c > 0):

s(a, c) =
c−1∑
i=0

P1

(
i

c

)
P1

(
ai

c

)
.

Here, P1 : Q→ Q is the “saw-tooth” function defined by

P1(x) =

{
x− ⌊x⌋ − 1

2
, (x ̸∈ Z);

0, (x ∈ Z).

It is known that, when both a and c are positive, the Dedekind sum has the following
beautiful reciprocity law

s(a, c) + s(c, a) = −1

4
+

1

12

(
c

a
+
a

c
+

1

ac

)
.
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The actual concern of the Dedekind sum to the transformation formula for the η-fucntion
is given through a Z-valued function φ on matrices A = (ac

b
d) ∈ SL2(Z) (c > 0) by

φ(A) =

{
b
d
, (c = 0);

a+d
c
− 12s(a, c), (c > 0).

It holds then the remarkable transformation formula

η(Aτ) =

{
e

2πi
24

φ(A)η(τ), (c = 0);

e
2πi
24

φ(A)
√

cτ+d
i
η(τ), (c > 0).

The algebraic properties of φ : PSL2(Z) → Z were investigated by Rademacher who
derived for example the composition formula

φ(AB) = φ(A) + φ(B)− 3sgn(cAcBcAB) (A,B ∈ SL2(Z)).

Here, for a matrix A ∈ SL2(Z), cA denotes the lower left entry of A. Following the nice
article by Kerby-Melavin [KM], we shall call φ the Rademacher function.

Various kinds of generalization of Dedekind sums and their reciprocity laws are known.
In many cases, the saw-tooth function P1 is regarded as the first member of the periodic
Bernoulli functions Pk (k = 1, 2, ...), where Pk for k ≥ 2 is a continuous function Pk(x) :=
Bk(x−⌊x⌋) defined by the Bernoulli polynomial Bk(T ) satisfying the generating function
zeTz

ez−1
=
∑∞

k=0Bk(T )
zk

k!
.

One direction of generalization can be given by focusing on the fact that the logarithmic
derivative of the η-function is the Eisenstein series E2 of weight 2 for SL2(Z) (see, e.g.,
[A] Chap.3, Ex. 5), in other words, the Rademacher function φ is a period integral of
E2 in a suitable sense. Let us consider a class of Eisenstein series of general weights and
levels: For an even integer k ≥ 2 and a pair x = ( r1

N
, r2
N
) ∈ ( 1

N
Z/Z)2 (x ̸= 0 when k = 2),

introduce the Eisenstein series on the upper half plane H := {τ ∈ C, ℑ(τ) > 0} by

(2.1) E
(x)
k (τ) :=

(k − 1)!

(2πi)k

∑
a∈(Z/NZ)2
a=(a1,a2)

e2πi(r1a2−r2a1)/N

′∑
m≡a(N)

1

(m1τ +m2)k

Here, the summation
∑′ is taken over the pairs m = (m1,m2) ∈ Z2 \ {(0, 0)} with

m1 ≡ a1, m2 ≡ a2 (mod N).
Although Eisenstein series have nontrivial constant terms at cusps so that their naive

Eichler-Shimura type period integrals do not converge, G.Stevens [St87] was able to obtain
convergent integrals by putting “modular caps” on modular symbols. He then introduces
generalizations of Rademacher function that represent period integrals of Eisenstein series.
There are also detailed studies (e.g., by Sczech [Scz]) describing explicitly the Eichler-
Shimura type 1-cocycle for Eisenstein series extended from Γ(N) to SL2(Z) or even to
GL2(Q). In the present article, however, we restrict ourselves to looking at a version

on PSL2(Z) associated to E
(x)
k valued in Symk−2(Q2) = Q[X, Y ]deg=k−2: we consider the

generalized Rademacher function

Φ(k)
x : PSL2(Z) −→ Symk−2(Q2) = Q[X,Y ]deg=k−2(2.2)

A = (ac
b
d) 7−→

k−2∑
r=0

Φ(r+1,k−1−r)
x (A)XrY k−2−r
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defined for A = (ac
b
d) ∈ SL2(Z) and x = (x1, x2) ∈ (Q/Z)2 (c ≥ 0) by

(2.3) Φ(k)
x

(
(ac

b
d)
)
=



−Pk(x1)
k

∫ b
d

0
(tX + Y )k−2dt, (c = 0);

−Pk(x1)
k

∫ a
c

0
(tX + Y )k−2dt

−Pk(ax1+cx2)
k

∫ 0

− d
c
(t(aX + cY ) + bX + dY )k−2dt

+
k−2∑
r=0

(−1)r
(
k−2
r

)
Xr(aX + cY )k−2−rs

(k−1−r,r+1)
x (a, c),

(c > 0).

Here, the last factor s
(k−1−r,r+1)
x (a, c) is (a genralization of) the classical Dedekind sum:

(2.4) s(k−1−r,r+1)
x (a, c) =

c−1∑
i=0

Pk−1−r(
x1+i
c

)

k − 1− r
Pr+1(x2 + ax1+i

c
)

r + 1

with Pk(T ) the above mentioned periodic Bernoulli polynomial.

Remark 2.1. Generalized Rademacher function in the above form was exhibited in [N03,
§2]. This formula was also applied in a context of non-commutative geometry [CM06,
p.105].

Remark 2.2. It is easy to see that s
(k−1−r,r+1)
x (a, c) is determined regardless of repre-

sentatives (x1, x2) in Q2 for any given class x ∈ (Q/Z)2. See also [HWZ] for reciprocity
formulas involving this type of generalized Dedekind sums.

The following basic formations for A,B ∈ SL2(Z) are known:

Φ
(2)
0 = − 1

12
φ(A);(2.5)

Φ(k)
x (A) = nk−2

∑
y∈ 1

n
x

Φ(k)
y (A) (n ≥ 1);(2.6)

Φ(k)
x (AB) = Φ(k)

x (A) + ρ(A).Φ
(k)
xA(B) +

1

4
δk=2
x sgn(cAcBcAB),(2.7)

where, δk=2
x is the characteristic function that gives the value 1 only when (k,x) = (2,0),

and ρ(A) for a matrix A = (ac
b
d) denotes the left action on Q[X, Y ]:

ρ(A) :

{
X 7→ aX + cY,

Y 7→ bX + dY ;
δk=2
x =

{
1, if (k,x) = (2,0);

0, otherwise.

3. Measure function E on the congruence kernel

For a while, we leave S to be a general (noetherian normal)Q-scheme as in Introduction,
and suppose that we are given a family of elliptic curves E−{O}/S with the Weierstrass
equation Y 2 = 4X3 − g2X − g3 (g2, g3 ∈ B, ∆ := g32 − 27g23 ∈ B×). We shall write

Π̂ = π1(Eξ̄ \ {O}) for the profinite fundamental group of a once punctured elliptic curve
– a free profinite group of rank 2 presented by

(3.1) Π̂ = ⟨x1, x2, z | [x1, x2]z = 1⟩,
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where z = x2x1x
−1
2 x−1

1 is taken as a topological loop on E(C) \ {O} around the puncture
O. In the fundamental exact sequence

(3.2) 1→ Π̂→ π1(E \O, ξ̃)→ π1(S, ξ̄)→ 1,

a standard section homomorphism π1(S) → π1(E \ {O}) is determined by the local

coordinate t = −2x/y at O that lifts the outer representation φ : π1(S) → Out(Π̂)
to

(3.3) φ̃ : π1(S)→ Aut(Π̂).

This action of π1(S) preserves the inertia subgroup ⟨z⟩ ⊂ Π̂ and acts on it by the cyclo-
tomic character. Cf. [N99] for a quick account of these matters.

Denote the commutator (resp. double commuatator) subgroup of Π̂ by Π̂′ (resp. Π̂′′).

Then, the abelianization Π̂ab := Π̂/Π̂′ is the free Ẑ-module generated by x̄1, x̄2, the images
of x1, x2, and the induced monodromy representation

φab : π1(S)→ GL(Π̂ab) = GL2(Ẑ)

is nothing but the action on the (projective limit) of torsion points of E. We shall say
the kernel π1(S∞) to be the congruence kernel of E − {O}/S.

The following proposition enables us to describe the action of π1(S∞) by φ on the

meta-abelian quotient Π̂/Π̂′′ in terms of a single measure function of two variables. Note

that Π̂′/Π̂′′ forms a free cyclic module over the complete group algebra Ẑ[[Π̂ab]] generated

by the image z̄ ∈ Π̂′/Π̂′′ of z ∈ Π̂′ by linearly extending the conjugate action of Π̂ab on

Π̂′/Π̂′′ ([I99]).

Proposition 3.1. Suppose that an automorphism α ∈ Aut(Π̂) of a free profinite group

Π̂ = ⟨x1, x2, z | [x1, x2]z = 1⟩ satisfies:
(i) α(⟨z⟩) = ⟨z⟩;
(ii) The action on Π̂/Π̂′ is trivial.

Then, there exists a unique element Eα ∈ Ẑ[[Π̂ab]] such that

α(x)x−1 ≡
(
(x̄− 1)Eα

)
· z̄ mod Π̂′′

holds for every x ∈ Π̂ whose image in the abelianization is written as x̄ ∈ Π̂ab.

It is not difficult to check that α 7→ Eα is an additive homomorphism, i.e.,

Eαβ = Eα + Eβ.

The pro-ℓ version of E (cf. §5 below) is the same as the one studied by S.Bloch [Bl84]
and H.Tsunogai [Tsu95a], and the proof idea of the above proposition dates back to their
work. For a proof of general profinite case, we refer the reader to [N13] §3.6.

4. E in terms of geometric invariants

Now, let us focus on a family of elliptic curves E − {O}/S. For each element σ of the

congruence kernel π1(S∞), the monodromy lift φ̃(σ) ∈ Aut(Π̂) satisfies assumptions (i),

(ii) of Proposition 3.1. Therefore, we obtain the induced element Eσ ∈ Ẑ[[Π̂ab]] which can
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be regarded as Ẑ-valued measure on Π̂ab ∼= Ẑ2. Naturally we are motivated to describe
the correspondence

E : π1(S∞) −→ Ẑ[[Ẑ2]](4.1)

σ 7−→ Eσ
in terms of geometric invariants of the family E/S of elliptic curves. To specify our
invariants, for each N ≥ 1, denote by SN → S the cover corresponding to the kernel of
monodromy action π1(S) → GL2(Z/NZ) on the N -torsion points of elliptic curves. Our
fixed coordinates of Tate modules x̄1, x̄2 determines a morphism from SN to the modular
curve X(N) of principal level N . We shall look at theta functions

θx(τ) = q
6B2(

r1
N

)
τ e12πi

r2
N

(
r1
N

−1)

[
(1− qz)

∏
n≥1

(1− qnτ qz)(1− qnτ q−1
z )

]12
,

for the pairs x = ( r1
N
, r2
N
) ∈ ( Z

N
)2. Set z = (r1τ + r2)/N , B2(T ) = T 2 − T + 1

6
, and

consider θx as a holomorphic function on the upper half plane τ ∈ H. Then, it gives a
modular unit on X(N2) (whose divisor has support on cusps) known as the 12-th power
of the so called Siegel units ([KL81]). Taking monodromy along power roots of θx on
S∞ → SN2 → X(N2), we obtain the Kummer character

(4.2) ρx : π1(S∞)→ Ẑ by
σ(θ

1/m
x )

θ
1/m
x

= ζρx(σ)m (σ ∈ π1(S∞), m ≥ 1).

Since shifting x by a pair in Z2 changes θx by multiplcation by a root of unity, and since
the structure ring of S∞ contains the roots of unity, it follows that ρx : π1(S∞)→ Ẑ is a
well-defined character for the congruence class x mod Z2.

Theorem 4.1. For each σ ∈ π1(S∞), let

Eσ,N =
∑

r∈(Z/NZ)2
eσ,N(r) · r

be the N -th component of Eσ ∈ Ẑ[[Ẑ2]] = lim←−N
Ẑ[(Z/NZ)2]. Then, the coeffcients eσ,N(r)

are given by

eσ,N(r) =

{
1
12
ρr/N(σ), (r ̸= 0);

1
12
ρ∆(σ)− ρN(σ), (r = 0).

Here ρr/N denotes ρx for any x ∈ ( Z
N
)2 with r = Nx mod N , and ρ∆ (resp. ρN) is the

Kummer character along power roots of ∆ := g32 − 27g23 (resp. of N) ∈ B× respectively.

The pro-l version of this theorem (where π1(S∞), Ẑ are replaced by π1(Sl∞), Zl respec-
tively) was shown in [N95]. See [N13] for more general profinite version.

5. Pro-l version and Lie derivations

Fix a rational prime l and consider the above construction for the maximal pro-l quo-
tient Πl of Π̂. Then, instead of E , we obtain its image E (l) projected in Zl[[Z2

l ]] which can
be defined on π1(Sl∞). Let us continue the notations x1, x2 and z of the presentation (3.1)
to denote their images in Πl. It is useful to denote by Aut∗1(Πl) (resp. of Aut∗1(Πl/Π

′′
l ))
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the group of automorphisms of Πl (resp. Πl/Π
′′
l ) that preserves the image of ⟨z⟩ and triv-

ially acts on Πab
l = Πl/Π

′
l. Then, E (l) is the composite of the monodoromy representation

φ(l) : π1(Sl∞)→ Aut∗1(Πl) with the natural meta-abelian reduction:

(5.1) E (l) : π1(Sl∞)
φ(l)

−→ Aut∗1(Πl) −→ Aut∗1(Πl/Π
′′
l )
∼= Zl[[Z2

l ]],

where the last identification ∼= is due to the pro-l version of Proposition 3.1. Write L(Ql)
for the Malcev Lie algebra of Πl which is generated by Xi = log(xi) (i = 1, 2) and
Z := log(z) subject to the single relation [X1, X2] + Z = 0. Introduce the lower central
filtration L(Ql) = L1 ⊃ L2 ⊃ · · · with Li+1 = [L1,Li] (i ≥ 1), and let Der∗+(L(Ql)) be the
Lie algebra of derivations of L(Ql) conveying Xi (i = 1, 2) into L2 = L(Ql)

′ and killing
Z. Then, the logarithmic map Log : Aut∗1(Πl) → Der∗+(L(Ql)) induces the following
commutative diagram:

π1(Sl∞)
φ(l)

// Aut∗1(Πl) //

Log
��

Aut∗1(Πl/Π
′′
l )

∼

Log
��

Zl[[Z2
l ]]

Der∗+(L(Ql)) // Der∗+(L(Ql)/L′′)
∼ Ql[[X1, X2]]

(5.2)

The lower central filtration of Πl also induces a filtration Der∗+(L(Ql)) = D1 ⊃ D2 ⊃ · · · ,
Der∗+(L(Ql)/L′′) = D1 ⊃ D2 ⊃ · · · by the spaces Di, Di of derivations of degree ≥ i

(i ≥ 1). Each of the graded quotients gri(D) = Di/Di+1 and gri(D) = Di/Di+1 is
canonically acted on by GL2(Ql) and decomposed into a sum of irreducible representations
χiSj := deti⊗Symj(Q2

l ) (i, j ≥ 0) of GL2 as indicated in the following table:

i griD griD
1 0 0

2 χS0 χS0

3 0 χS1

4 χS2 χS2

5 0 χS3

6 χS4 + 0 + χ2S0 χS4

7 0 + χ2S3 χS5

8 χS6 + 0 + 2χ3S2 χS6

9 0 + χ2S5 + χ3S3 + χ4S1 χS7

10 χS8 + χ2S6 + 3χ3S4 + χ4S2 + 3χ5S0 χS8

11 0 + χ2S7 + 2χ3S5 + 4χ4S3 + 2χ5S1 χS9

12 χS10 + χ2S8 + 5χ3S6 + 4χ4S4 + 8χ5S2 χS10

13 0 + 2χ2S9 + 3χ3S7 + 8χ4S5 + 9χ5S3 + 6χ6S1 χS11

14 χS12 + χ2S10 + 7χ3S8 + 9χ4S6 + 18χ5S4 + 11χ6S2 + 11χ7S0 χS12

15 0 + 2χ2S11 + 5χ3S9 + 14χ4S7 + 21χ5S5 + 26χ6S3 + 17χ7S1 χS13

Note that, for i ≥ 2, griD is given by the space of homogeneous polynomials in Ql[[X1, X2]]
of degree i− 2, where GL2(Ql) acts by the natural action on QlX1 ⊕ QlX2 twisted once

by the det-character. Tsunogai, already in [Tsu92], showed that griD =
∑
j≥1

b
(i)
j−1χ

jSi−2j
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with

(5.3) b
(i)
0 =

{
0 (i : odd),

1 (i : even);
b
(i)
1 =

{
⌊ i−1

6
⌋ − 1 (i ≡ 2 mod 6, i > 2),

⌊ i−1
6
⌋ (i ̸≡ 2 mod 6),

and noted that b
(i)
1 is the dimension of the cusp forms of weight 2(i− 1) for SL2(Z) ii). It

is also noteworthy that the highest weight part of gr2iD (i ≥ 1) under the action of sl2
appears multiplicity freely (according to b

(2i)
0 = 1 in the above notation) and is generated

by the graded derivation

(5.4) ϵ2i :


X1 7→ (adX1)

2i(X2),

X2 7→
i−2∑
r=0

[(adX1)
r(X2), (adX1)

2i−1−r(X2)]

on Gr(L(Ql)), as figured out first by Tsunogai in [Tsu95b, §3].
In particular, it follows that the image of E (l) : π1(Sl∞) → Zl[[Z2

l ]] lies in the even
degree part of Zl[[Z2

l ]], i.e., the invariant part of (−1
0

0
−1) ∈ GL2(Zl). This latter fact is

also a geometric consequence of the fact that the elliptic curve E/S has involution by the
multiplication by (−1) of E, as noted in [N95].

On the other side, one also observes in the above table that sl2-invariant components
S0 start to appear in gr6D, gr10D, gr14D,... In fact, we know that the image of φ(l)

for arithmetic base S contains an sl2-invariant free Lie algebra which has one non-trivial
generator in each degree 2k (k ≥ 3, odd) surviving via the Soule character inH1(Q,Zl(k)).
This is a consequence of the Deligne-Oda conjecture (specialized to genus one case) which
was settled by several Japanese authors in 1990s, combined with F.Brown’s more recent
result on the mixed Tate motives. For this topic, we refer the readers to a comprehensive
survey article by M.Matsumoto [Mat13] and references therein.

6. E on CSL2

Let us apply the construction of §3-4 to the case where S = M1,1 ⊗ Q (the moduli

stack of elliptic curves) and E \ {O} ∼= M1,2 ⊗ Q (the universal elliptic curve over S).
There is a theoretical treatment of etale fundamental groups for moduli stacks (cf. [Od97])
which provides (3.1), (3.2) and (4.1) in a well-behaved manner [while the exact sequence
(3.2) does not split so that a lifted monodromy φ̃ (3.3) is unavailable and needs a careful
alternative]. In this case, π1(S) is naturally identified with the profinite completion of
SL2(Z). We shall consider two different kinds of topology : the congruence topology and
the non-congruence topology on SL2(Z). In the congruence topology, two matrices A and
B are closer to each other as A ≡ B modulo a (multiplicatively) bigger integer. In the
non-congruence topology, they are regarded as closer when the ratio AB−1 lies in smaller
subgroups of SL2(Z) of finite index. There is a projection of the completion in the latter
topology

SL2(Z)∧ := lim←−
(SL2(Z):U)<∞

(SL2(Z)/U)

ii)See [MSS] Proposition 8.2 for a proof. The latter was also observed and enlightened by D.Zagier on
the occasion of my talk at Bristol conference in May, 2011.



10

onto the completion in the former topology SL2(Ẑ). The congruence kernel is by definition

π1(S∞) = CSL2 := ker(SL2(Z)∧ → SL2(Ẑ)):

1 −→ CSL2 −→ SL2(Z)∧ −→ SL2(Ẑ) −→ 1.

To see CSL2 in a more down-to-earth way, let Γ(n) ⊂ SL2(Z) be the principal congru-
ence subgroup of level n ≥ 3, and let Pn ⊂ SL2(Z) be the normal subgroup generated by
the inertia subgroups in Γ(n) at cusps on the modular curve X(n). In other words, the
Pn is the smallest normal subgroup of SL2(Z) containing the matrix (10

n
1 ). According to

K.Wohlfahrt [Woh64], we know that {Γ(n)/Pn}n forms a surjective projective system with
respect to the levels n multiplicatively. Note that the quotient group Γ(n)/Pn is isomor-
phic to the fundaemental group of the compactified modular curve X(n), in particular, is
of residually finite.

Lemma 6.1. (i) CSL2 is isomorphic to the projective limit lim←−n
(Γ(n)/Pn)

∧.

(ii) For a prime l, let CSL
(l)
2 be the kernel of natural map SL2(Z)∧ → SL2(Zl). Then,

CSL
(l)
2 is isomorphic to lim←−n

(Γ(ln)/Pln)
∧.

(iii) Both CSL2 and CSL
(l)
2 are free profinite groups on a countable number of genera-

tors.

Proof. To prove (i), we shall trace an arugment in [Se70, §2.5] carefully in our context.
First, we remark that every finite index subgroup H of SL2(Z) contains Pm for some large
enough m. [Indeed, without loss of generality we may assume H is normal in SL2(Z), and
then may pick m > 0 so that (10

m
1 ) ∈ H.] Now, for every positive integer n, we have an

exact sequence of profinite groups:

1→ (Γ(n)/Pn)
∧ → (SL2(Z)/Pn)

∧ → SL2(Z/nZ)→ 1.

The assertion follows from taking the projective limit of the above sequence with respect
to n multiplicatively:

1→ lim←−
n

(Γ(n)/Pn)
∧ → SL2(Z)∧ → SL2(Ẑ)→ 1.

Note here that the middle term identification with SL2(Z)∧ follows from the above remark,

and that the surjectivity onto SL2(Ẑ) is a consequence of (kind of Mittag-Leffler condition
deduced from) the above mentioned surjectivity result by Wohlfahrt [Woh64]. (ii) follows
from an exactly similar argument to (i). (iii): It is well known that CSL2 is a free profinite

group with countably many generators (Melnikov, Lubotzky [Lu82]). As for CSL
(l)
2 , we

first note that CSL
(l)
2 is a closed normal subgroup of a free profinite group Γ(l2) with

some e (2 ≤ e < ∞) free generators. To show the assertion, by [Lu82, Theorem 2.1(b)],

it suffices to see that the quotient group Q := Γ(l2)/CSL
(l)
2 is not ‘e-freely indexed’ in

the sense of loc.cit. This follows from that fact Q is an analytic pro-l group (⊂ SL2(Zl))
whose open subgroups have a stable rank [i.e., the minimal number of generators of open
subgroups H ⊂ Q does not increase with (Q : H)]. □

To approximate each σ ∈ CSL2 by a sequence of 2×2 integral matrices in the non-
congruence topology, we introduce for n ≥ 1,

(6.1) Vn :=
∩

Hn,

where Hn is the collection of all subgroups H of Γ(n) with (Γ(n) : H)|n and Pn ⊂ H.
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Lemma 6.2. Notations being as above, we have

(i) Vm ⊃ Vn if m|n.
(ii) Every finite index subgroup H of SL2(Z) contains Vn for some n.

Proof. (i) Set m = N and n = MN . Remark that, by the above mentioned theorem of
Wohlfahrt, the natural map π : Γ(MN)/PMN → Γ(N)/PN is a surjective homomorphism.
Pick any α ∈ VMN and H ∈HN . It suffices to show α ∈ VN . Now, from the above remark
it follows that the index of H ′ := H ∩ Γ(MN) in Γ(MN) is the same as that of H in
Γ(N), hence (Γ(MN) : H ′) divides N , in particular, divides MN . Thus H ′ ∈ HMN ;
hence α ∈ VMN ⊂ H ′ ⊂ H. Letting H vary in the members of HN , we obtain α ∈ VN .

(ii) Let H be a subgroup of SL2(Z). Without loss of generality, we may assume H
is a normal subgroup. Pick a positive integer N with (10

N
1 ) ∈ H. Then PN ⊂ H. Let

H ′ := H ∩ Γ(N), M := (Γ(N) : H ′) and set H ′′ := Γ(MN) ∩ H ′. Then, again by the
above theorem of Wohlfahrt tells the natural map π : H ′′/PMN → H/PN is a surjective
homomorphism, hence H ′ = H ′′ · PN . From this it follows that (Γ(MN) : H ′′) = (Γ(N) :
H ′) = M divides MN and that H ′′ ∈ HMN . Therefore we conclude VMN(⊂ H ′′) ⊂ H,
which settles the proof. □
Definition 6.3. We shall say that a matrix sequence {An ∈ Γ(n)} converges to σ ∈ CSL2

in the non-congruence topology, if there is an integer N such that, for every positive

multiple n of N , the images of An and σ in the finite quotient Γ̂(n)/V̂n(= Γ(n)/Vn)
coincide to each other.

We would like to look closely at the measure function E : CSL2 → Ẑ[[Ẑ2]] in the
case of S = M1,1 ⊗ Q in terms of a sequence of matrices converging to σ ∈ CSL2. Let

ε : Ẑ[[Ẑ2]] → Ẑ be the augmentation homomorphism. We shall take the unique lift of

CSL2 = π1(S∞) in Aut∗1(Π̂) such that ε(Eσ) = 0 for all σ ∈ CSL2. (The existence and
uniqueness of such a lift can be seen group-theoretically from the fact that gr2D ∼= Ql(2)
for all primes l iii). See also Lemma 9.1 below.) This is equivalent to vanishing of 1

12
ρ∆

on CSL2. If we denote the image of Eσ in Ẑ[(Z/NZ)2] by

Eσ,N =
∑

r∈(Z/NZ)2
eσ,N(r) · r

as in the setting of Theorem 4.1, then we have eσ,N(0) = 0. (Note that θx changes to

its certain constant multiples when x ∈ Q2 varies modulo Z2, whereas E
(x)
2 relies only

on the class x ∈ (Q/Z)2.) As for the other r = (r1, r2) ∈ (Z/NZ)2 \ {0}, eσ,N(r) are
approximated by monodromy actions on the power roots of θr/N through the identity

(6.2)
d

dτ
log θx(τ) = −(24πi)E(x)

2 (τ)

(
x = (

r1
N
,
r2
N
) ∈ (

1

N
Z/Z)2 \ {0}

)
.

More precisely, if a sequence of matrices {An ∈ Γ(n)}n converges to σ ∈ CSL2 in the
non-congruence topology, then, for every m ≥ 1, there exists a large enough n such that
A = An satisfies

σ(θx(τ))
1/m

θx(τ)1/m
=
θx(τ)

1/m|tA
θx(τ)1/m

= exp

(
−24πi

m

∫ tAτ

τ

E
(x)
2 (τ)dτ

)
= ζ−12Φ

(2)
x (tA)

m .

iii)This remark could be traced back to [N95] (4.4).



12

Thus, we have
ρx(σ) = −12 lim

n→×∞
Φ(2)

x (tAn),

where lim
n→×∞

means the limit in n (multiplicatively). In the setting of Theorem 4.1, the

above discussion can be summarized as

(6.3) eσ,N(r1, r2) =

{
− lim

n→×∞
Φ

(2)

(
r1
N

,
r2
N

)
(tAn), (r1, r2) ̸≡ 0 (mod N);

0, (r1, r2) ≡ 0 (mod N).

By the multiplicative independence of Siegel units (cf. [KL81, Chap. 5, §7]), the image of

E covers most of the even part Ẑ[[Ẑ2]]+, which is the invariant part under the involution
‘x↔ −x’. This means that E maps CSL2 into (ker(ε)4)+ so as to have an open image in
every quotient (ker(ε)4/ker(ε)N)+ for N ≥ 4. More effective estimation of that image size
should amount to calculation of the integrals of the logarithmic derivative of θx(τ) along
any path on H from a point τ0 to Aτ0 for various matrices A ∈ SL2(Z), i.e., periods of
Eisenstein series. This will be one of the ultimate goals of our discussions below bringing
into play the classical formulas for such Eisenstein periods via (generalized) Dedekind
sums.

7. Eisenstein periods in l-adic expansion of E
Let us first review classical Eisenstein cocycles. For an integer k > 2, the Eisenstein

series

Ek(τ) :=
(k − 1)!

(2πi)k

′∑
(m1,m2)

1

(m1τ +m2)k
(τ ∈ H),

where the summation is over the pairs (m1,m2) ∈ Z2 \ {(0, 0)}, is a modular form of
weight k for SL2(Z), and its q-expansion has the constant term −Bk/k (q = exp(2πiτ)).

Note that the above Ek is a special case E
(0)
k of (2.1) and that Ek ≡ 0 for odd k > 2.

Choose a (k − 1)-th indefinite integral called the “Eichler integral of the first type” by

Fk(τ) = −
1

(k − 2)!

∫ i∞

τ

(
Ek(u) +

Bk

k

)
(τ − u)k−2du− Bk

k

τ k−1

(k − 1)!
.

Let A = (ac
b
d) ∈ SL2(Z) act on H by τ 7→ aτ+b

cτ+d
. Consider an amplitude of the above Fk(τ)

under transformation by A = (ac
b
d) ∈ SL2(Z):

ϕk(A) := Fk(Aτ)(cτ + d)k−2 − Fk(τ).

It is easy to see that ϕk(A) turns out to be a polynomial in τ of degree (k−2). Moreover,
the (coefficientwise) real part Re(ϕk) is known to be in Q[τ ]. In fact, from a series of
computations similar to [G80, Remark 4.7], [H83, §1.4], we obtain

(7.1) Xk−2Re(ϕk)(A)

(
−Y
X

)
=

(−1)k−1

(k − 2)!
Φ

(k)
0 (A−1)(X,Y )

in Q[X, Y ]deg=k−2 for A ∈ SL2(Z).
Definition 7.1 (Eisenstein cocycle). For i, j ≥ 0 with i+ j = k − 2 ≥ 0, define the map
ψij : SL2(Z)→ Q by the following identity of polynomials in Q[τ ]:∑

i+j=k−2

ψij(A)τ
i := −Re(ϕk)(

tA) (A ∈ SL2(Z)).
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We then define a polynomial Ψk(A) (A ∈ SL2(Z)) in two variables X,Y by

Ψk(A)(X, Y ) :=
∑

i+j=k−2
i,j≥0

ψij(A)X
jY i

(
= −Xk−2Re(ϕk)(

tA)

(
Y

X

)
.

)

The above definition 7.1 combined with (2.2), (7.1) implies

−
∑

i+j=k−2

ψij(
tA)Xj(−Y )i =

(−1)k−1

(k − 2)!

∑
i+j=k−2

Φ
(j+1.i+1)
0 (A−1)XjY i

for every matrix A ∈ SL2(Z). In particular, it holds that

(7.2) ψij(
tA) =

(−1)j

(k − 2)!
Φ

(j+1,i+1)
0 (A−1)

for i, j ≥ 0, i+ j = k − 2.

l-adic (and adelic) Eisenstein periods.

Let l be a fixed rational prime. For the universal elliptic curve S =M1,1⊗Q, the power
series representation E (l) of (5.1) is an additive homomorphism from the l-congruence

kernel CSL
(l)
2 = Ker(SL2(Z)∧ → SL2(Zl)) to Zl[[Z2

l ]]. Write x̄1, x̄2 for the images of

generators x1, x2 of Π̂ in the pro-l abelianization. Then the target ring Zl[[Z2
l ]] is identified

with the commutative power series ring Zl[[T1, T2]] in Ti = x̄i − 1 (i = 1, 2), which may
be embedded into the rational power series ring Ql[[U1, U2]] generated by Ui := log(x̄i)

(i = 1, 2). Expand E (l)σ for σ ∈ CSL
(l)
2 in the form:

E (l)σ =
∞∑

i,j=0

e
(l)
ij (σ)

U i
1U

j
2

i!j!
,

and consider the coefficient character e
(l)
ij : CSL2 → Zl. By the symmetry condition, we

immediately see that e
(l)
00 = 0 and that if i + j = odd then e

(l)
ij = 0. In the following, we

shall interpret the other coefficients as “l-adic limits” of Eisenstein cocycles.
For our fixed prime l and given i, j ≥ 0 with i+ j = k − 2 ≥ 0, we shall introduce the

l-adic limit

(7.3) ψ
(l)
ij : CSL

(l)
2 → Ql

of the coefficient character ψij : SL2(Z) → Q as follows. First, since SL2(Z) is finitely
generated, from the composition rule (2.7), we know that the denominator of the image
of SL2(Z) by ψij is bounded. Moreover, recalling from (2.3) that

Φ
(k)
0 ((10

ln

1 )) = −
Bk

k

∫ ln

0

(tX + Y )k−2dt,

we see from (7.1) that there is a constant integer c so that for every n ≥ 1 the image of
Pln by ψij is divisible by ln−c. Thus, there are sufficiently large integers α, β such that

• For every σ ∈ SL2(Z), it holds that α · ψij(σ) ∈ Z;
• For every n ≥ 1 and σ ∈ Pln+β , it holds that α · ψij(σ) ∈ lnZ.
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Consider the projective limit

α · ψij : CSL
(l)
2 = lim←−

n

(Γ(ln+β)/Pln+β)∧ −→ lim←−
n

(Zl/l
nZl) = Zl

and define ψ
(l)
ij : CSL

(l)
2 → Ql to be the α−1-multiple of it. This is well defined and

determined independently of the choice of α, β. Accordingly we define

(7.4) Ψ
(l)
k (σ)(X,Y ) :=

∑
i+j=k−2

i,j≥0

ψ
(l)
ij (σ)X

jY i (σ ∈ CSL
(l)
2 ).

Theorem 7.2. For each σ ∈ CSL
(l)
2 , the coefficient characters in the expansion

E (l)σ =
∑
i,j

e
(l)
ij (σ)

U i
1U

j
2

i!j!

are given by:

e
(l)
ij (σ)

i!j!
=

{
ψ

(l)
ij (σ) (i+ j ≥ 2, even),

0 (otherwise).

We will illustrate a proof of this theorem in the next section.

Before closing this section, let us introduce the profinite version of Ψk and ψij. Note

first that CSL2 =
∩

l:prime

CSL
(l)
2 , since SL2(Ẑ) =

∏
l

SL2(Zl).

Definition 7.3. We define ψ̂ij : CSL2 → Q⊗ Ẑ to be the mapping

σ 7−→ (ψ
(l)
ij (σ))l ∈

∏
l

(
1

i!j!
Zl

)
⊂ Q⊗ Ẑ,

and accordingly define Ψ̂k : CSL2 → (Q⊗ Ẑ)[X,Y ] by

Ψ̂k(σ)(X, Y ) =
∑

i+j=k−2
i,j≥0

ψ̂ij(σ)X
jY i (σ ∈ CSL2).

8. Trading levels for weights: Proof of Theorem 7.2

Derivation of Theorem 7.2 from Theorem 4.1 amounts to deriving information on
Eichler-Shimura integrals for Eisenstein series of any higher weights k ≥ 4 for the fixed
level Γ(1) = SL2(Z) from those for the Eisenstein series of weight k = 2 fixed but for all
levels Γ(N) (N ≥ 1). In the terminology of generalized Rademacher functions introduced
in §2, we may reduce Theorem 7.2 to combination of Theorem 4.1 with the following

Lemma 8.1. Let N , r, k be integers with N ≥ 1, k ≥ 2, 0 ≤ r ≤ k − 2, and let Z′
N ⊂ Q

be the ring of rational numbers whose denominators are prime to N . Then, there exits
a positive integer Dk,r depending only on k, r such that for each A ∈ Γ(N) the following
congruence holds(

k − 2

r

)N−1∑
x=0

N−1∑
y=0

xk−2−r(−y)rΦ(2)

( x
N
, y
N
)
(A) ≡ Φ

(r+1,k−1−r)
0 (A)

mod
(
k−2
r

)
N

12Dk,r
Z′

N .
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See [N03] for a proof of this lemma and for an explicit description of Dk,r as the common
denominator of finitely many Bernoulli numbers. The lemma was first shown in the
special case r = 0 by the author, and the general case was conjectured by Mr.Morimoto
in his Master thesis ([Mo02]) who detected the binomial coefficient (k−2

r ) by numerical
experiments. Then it was not difficult to conjecture a polynomial congruence in the form

(8.1)
N−1∑
x=0

N−1∑
y=0

(xY − yX)k−2Φ
(2)

( x
N
, y
N
)
(A) ≡ Φ

(k)
0 (A)(X,Y )

modulo N
Dk

Z′
N with a bounded denominatorDk inQ[X, Y ]. Soon afterwards an elementary

proof of the above lemma was obtained as in [N03].

Example 8.2. Let us discuss a simple numerical example for congruences of Lemma 8.1.

Take a matrix A =

(
12 −55
55 −252

)
∈ Γ(11), and consider the case k = 6, N = 11. In

this case, for all 0 ≤ r ≤ 4, we have
(
4
r

)
11

12D6,r
Z′
11 = 11Z′

11. The RHS (the real part of

Eichler-Shimura integral) is then

Φ
(6)
0 (A)(X,Y ) =

1398479

42
X4+

1537687159

2520
X3Y +

58706693

14
X2Y 2+

6455052203

504
XY 3+

308055833

21
Y 4,

while LHS (the moment sum) is
10∑

x,y=0

(xY − yX)4Φ
(2)

( x
11

, y
11

)
(A) =

52009

4
X4− 19121X3Y +

68901

2
X2Y 2− 19121XY 3+

52009

4
Y 4.

The above coefficients are all prime to 11. The difference RHS−LHS is computed as

Φ
(6)
0 (A)(X,Y )−

10∑
x,y=0

(xY − yX)4Φ
(2)
( x
11 ,

y
11 )

(A)

=
1704769

84
X4 +

1585872079

2520
X3Y +

29112193

7
X2Y 2 +

6464689187

504
XY 3 +

1231131143

84
Y 4 ≡ 0

mod 11Z′
11.

Now, let σ ∈ CSL2 and pick a matrix sequence {An ∈ Γ(n)}n converging to σ in the
non-congruence topology. Putting (6.3) and (7.2) with A = An into Lemma 8.1, and
taking the limit n→ ×∞ for n multiples of N , we obtain

(8.2) −
N−1∑
x=0

N−1∑
y=0

xiyjeσ,N(x, y) ≡ lim
N |n→×∞

(−1)ji! j!
(k − 2)!

Φ
(j+1,i+1)
0 (tAn) = i! j! ψ̂ij(σ

−1)

mod N
12Dk,r

Ẑ for N subject to being multiples of 12Dk,r. Now, the element

Eσ = lim←−
N

Eσ,N = lim←−
N

∑
r∈(Z/NZ)2

eσ,N(r) · r

of the complete group algebra

Ẑ[[Ẑ2]] = lim←−
N

Ẑ[(Z/NZ)2] = lim←−
m,n

(Z/mZ)
[
(Z/nZ)2

]
may be regarded as a Ẑ-valued measure dEσ on the profinite space Ẑ2. Write x, y to
denote the projection map Ẑ2 → Ẑ to the first, second component respectively. Then,
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we can compute the moment integral
∫
Ẑ2 x

iyjdEσ(x, y) by letting N → ×∞ in the above
congruence (8.2):

Theorem 8.3. For σ ∈ CSL2, we have∫
Ẑ2

xiyjdEσ(x, y) = i! j! ψ̂ij(σ) (i, j ≥ 0).

If we restrict the above argument to prime power levels N = lm, then moment sums

of the LHS of Lemma 8.1 give the Taylor coefficients of E (l)σ , while RHS gives the period
polynomial of Ek. Then, in the exactly similar discussion to Theorem 8.3, we obtain the
proof of Theorem 7.2.

We can also collect the congruence formulas (8.1) into the following form of identity

Corollary 8.4. For σ ∈ CSL2, we have∫
Ẑ2

(xY + yX)k−2dEσ(x, y) = (k − 2)! Ψ̂k(σ)(X,Y )

in Ẑ[X,Y ]deg=k−2.

Proof. The left hand side equals∑
i+j=k−2

i,j≥0

(
k − 2

i

)[∫
Ẑ2

xiyjdEσ(x, y)
]
XjY i.

The corollary follows from the the above theorem and Definition 7.3. □

Special values at roots of unity.

Next, we consider special values of Eσ ∈ Ẑ[[Ẑ2]] (σ ∈ CSL2) at pairs of roots of unity.

Regard Ẑ[[Ẑ2]] as the projective limit of Ẑ[(Z/nZ)2] = Ẑ[x, y]/(xn − 1, yn − 1). Then,
according to Theorem 4.1 and (6.3), the image Eσ,N of Eσ at the N -th layer can be written
as

(8.3) Eσ,N(x, y) ≡ −
n−1∑
i,j=0

(i,j) ̸=(0,0)

(
lim

n→×∞
Φ

(2)

( i
N
, j
N
)
(tAn)

)
xiyj mod (xN − 1, yN − 1),

where {An} is any matrix sequence converging to σ ∈ CSL2 in the non-congruence topol-

ogy. From this description, for each pair of ζ, ζ ′ ∈ µN , the value Eσ(ζ, ζ ′) ∈ Ẑ×Q(ζN) is
well defined to be Eσ,N(ζ, ζ ′).

Now, the division values of the Weierstrass ℘-function ℘
(
aτ+b
N

; τ, 1
)
for a fixed pair

(a, b) ∈ (Z/NZ)2 \ {0} is a holomorphic modular form in τ ∈ H of weight 2 for Γ(N). If
A ∈ Γ(N), then the period integral

1

(2πi)2

∫ Az

z

℘

(
aτ + b

N
; τ, 1

)
dτ

is independent of z ∈ H or of an integral path z⇝Az. This integral is known to be valued
in Q(ζN). (Moreover if A ∈ Γ(12N2) then the value is in Z[ζN ].)
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Proposition 8.5. iv) Let {An ∈ Γ(n)}n be a matrix sequence converging to σ ∈ CSL2 in
the non-congruence topology. Then, for (s, t) ∈ (Z/NZ)2 \ {0},

Eσ(ζsN , ζtN) = lim
N |n→×∞

1

(2πi)2

∫ (tA−1
n )z

z

℘

(
tτ − s
N

; τ, 1

)
dτ

(
∈ Ẑ⊗Q(ζN)

)
.

Here, limN |n→×∞ means the limit when n runs multiplicatively over the integers that are
multiples of N .

Proof. By (8.3), we have

Eσ(ζsN , ζtN) =
∑

(i,j)∈(Z/NZ)2
(i,j) ̸=0

eσ,N(i, j)ζ
si+tj
N = − lim

n→×∞

N−1∑
i,j=0

(i,j)̸=(0,0)

Φ
(2)

( i
N
, j
N
)
(tAn)ζ

si+tj
N .

Recall also that Φ
(2)
x (tA−1) = −Φ(2)

x (tA) for A ∈ Γ(N) and x ∈ ( 1
N
Z/Z)2. Then, comparing

the periods of both sides of the classical identity (cf. [Sch, VII §3.2]):∑
(i,j)∈(Z/NZ)2
(i,j) ̸=(0,0)

ζsi+tj
N E

( i
N
, j
N
)

2 (τ) =
1

(2πi)2
℘

(
tτ − s
N

; τ, 1

)
,

we settle the proof of the assertion. □

9. Braid groups and Weierstrass equation

Our Eisenstein representation E : CSL2 → Ẑ[[Ẑ2]] can be constructed from braid groups
in a purely group theoretical way as follows. Consider the Artin braid group with 4 strands

B4 := ⟨τ1, τ2, τ3 | τ1τ3 = τ3τ1, τiτi+1τi = τi+1τiτi+1 (i = 1, 2)⟩,
and regard the subgroup generated by τ1, τ2 as the braid group B3 with three strands.
There is also a rank 2 free subgroup F2 in B4 freely generated by x1 := τ−1

1 τ3τ2τ1τ
−1
3 τ−1

2

and x2 := τ1τ
−1
3 . If we put z := (τ1τ2)

6(τ1τ2τ3)
−4 ∈ F2, then x1x2x

−1
1 x−1

2 z = 1 holds, so
that we may identify

F2
∼= Π = ⟨x1, x2, z | [x1, x2]z = 1⟩

as the fundamental group of a once-punctured elliptic curve. These subgroups B3, Π of B4

give the semi-direct decomposition B4 = Π ⋊ B3, in which the defining conjugate action
φ : B3 → Aut(Π) is given by

(9.1) φ(τ1) :

{
x1 7→ x1x

−1
2 ,

x2 7→ x2;
φ(τ2) :

{
x1 7→ x1,

x2 7→ x2x1.

Taking profinite completion B̂4 = F̂2 ⋊ B̂3, we obtain

φ̃ : B̂3 → Aut(F̂2)

whose image turns out to fix z ∈ Π̂. Let CB3 be the congruence kernel for B̂3, i.e., the
kernel of the abelian reduction φab : B̂3 → SL2(Ẑ) ⊂ Aut(Πab). Then, by Proposition
3.1, we obtain the Eisenstein representation

(9.2) E : CB3 −→ Ẑ[[Ẑ2]].

iv)The appearance of ℘ was hinted from a comment by M.Kaneko on the occasion of my talk [N02j]
in Muroran, 2002.
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Now, let us construct a canonical embedding CSL2 ↪→ CB3 so that the restriction E|CSL2

of (9.2) gives the one considered in §6-8. In fact, we can canonically lift the commutator
subgroup SL′

2 := [SL2(Z), SL2(Z)] into B3 in the following way. Let ρ∆ : B3 → Z be
the abelianization homomorphism sending both τ1 and τ2 to −1 ∈ Z, and let ρ : B3 →
SL2(Z) be the matrix representation induced by (9.1); these two homomorphisms are
characterized by

ρ∆ : B3 → Z

{
ρ∆(τ1) = −1,
ρ∆(τ2) = −1;

ρ : B3 → SL2(Z)

{
ρ(τ1) = ( 1

−1
0
1),

ρ(τ2) = (10
1
1).

Lemma 9.1. Notations being as above, we have a canonical lift SL′
2 ↪→ B3 as well as

ŜL′
2 ↪→ B̂3. It then induces a canonical embedding CSL2 ↪→ CB3 whose image is identified

with the kernel of ρ̂∆ : CB3 ↠ 12Ẑ.

Proof. Since SL2(Z) = B3/⟨(τ1τ2)6⟩, the abelianization of SL2(Z) is induced from ρ̄∆ :
B3 → Z/12Z, i.e., SL′

2 is isomorphic to the subquotient Ker(ρ̄∆)/⟨(τ1τ2)6⟩. Consequently
it follows that Ker(ρ∆) ∼= SL′

2, for ρ∆ injectively maps ⟨(τ1τ2)6⟩ onto 12Z. It is easy to
see that the profinite completion functor preserves the above procedure faithfully. The

restriction from ŜL′
2 to CSL2 gives the last assertion. □

The geometric origin of E : CSL2 → Ẑ[Ẑ2]] is the universal family of affine Weierstrass
elliptic curves E \ {O} := {Y 2 = 4X3 − g2X − g3} over the space of coefficients S :=
{(g2, g3)|∆ = g32 − 27g23 ̸= 0}. It turns out that π1(E \ {O}) (resp. π1(S)) is an extension

of GQ by B̂4 (resp. B̂3) and that suitably chosen paths τ1, τ2, τ3 with Q-rational tangential
basepoints give the monodromy action (9.1) and the Galois actions in the form

(9.3)


x1 7→ z

1−χ(σ)
2 fσ(x1x2x

−1
1 , z)x1fσ(x

−1
2 , z)−1,

x2 7→ fσ(x
−1
2 , z)x

χ(σ)
2 fσ(x

−1
2 , z)−1,

z 7→ zχ(σ)

for σ ∈ GQ, where (χ(σ), fσ) ∈ Ẑ×× F̂2 denotes the standard image in the Grothendieck-

Teichmüller group ĜT ([N99]; see also [N13] §5). At this stage, we would become inclined
to reconstruct a whole view on Eisenstein invariants in spirit of anabelian geometry around
fundamental pieces M0,n (n = 3, 4, 5), M1,n (n = 1, 2).

As a sequel motivated by the above viewpoint, we later posed in [N13] a certain series
of monodromy invariants in the form

Em : π1(S)× Ẑ2 −→ Ẑ (m ∈ N)

associated to any family of elliptic curves E \ O over S in the general setting of §3.
This invariant series {Em}m∈N turned out to recover E : π1(S∞) → Ẑ[[Ẑ2]] as well as
to enjoy some elementary congruence properties investigated in [N12]. Based on those
results in loc. cit., we can obtain a good series of extensions of E to finite levels: Em⌉M :
π1(SmN) → (Z/MZ)[(Z/mZ)2] for m,M ∈ N (where N := M , 2M according as 2 ∤
M , 2|M respectively) that should encode highly arithmetic information on Eisenstein
quotients of modular curves. We will discuss some more progress in our subsequent work
[N16].
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